题名

Prediction of Fatigue Failures of Aluminum Disc Wheels Using the Failure Probability Contour Based on Historical Test Data

并列篇名

運用歷史測試資料作鋁合金輪圈疲勞破壞機率預測

DOI

10.29977/JCIIE.200411.0004

作者

徐業良(Yeh-Liang Hsu);王樹根(Shu-Gen Wang);劉子吉(Tzu-Chi Liu)

关键词

疲勞測試 ; 鋁合金輪圈 ; 破壞機率 ; Fatigue test ; Aluminum disc wheel ; Failure probability

期刊名称

工業工程學刊

卷期/出版年月

21卷6期(2004 / 11 / 01)

页次

551 - 558

内容语文

英文

中文摘要

汽車輪圈量産前必須通過三種測試:動態彎曲疲勞測試、動態徑向疲勞測試、與衝聲測試。本文描述一結合輪圈電腦模擬結果與輪圈歷史測試資料,以預測鋁合金輪圈動態彎曲疲勞測試及動態徑向疲勞測試之疲勞破壞機率的模式。本文首先以多個鋁合金輪圈有限元素分析與實際的測試結果之比對,建立破壞機率的等高線分布圖,對於一個新設計輪圖,動態彎曲疲勞測試的破壞機率可以從此機率等高線分布圖中直接的讀出,此新輪圖的實際測試結果亦會被加入到歷史測試資料中,更新其破壞機率等高線圈,此預測方式將會因歷史測試資料的增加與更新而更加的可靠。

英文摘要

Disc wheels intended for normal use on passenger cars have to pass three tests before going into production: the dynamic cornering fatigue test, the dynamic radial fatigue test, and the impact test. This paper describes a probability model for prediction of fatigue failures of aluminum disc wheels, which intends to better link the prediction using simulation results with historical test data. Finite element models of 54 aluminum wheels, which are already physically tested, are constructed to simulate the dynamic cornering fatigue test. Their mean stresses and stress amplitudes during the fatigue loading cycle are calculated and plotted on a two-dimensional plane. Matching with historical test data, the failure probability contour can be drawn. For a new wheel, the failure probability of dynamic cornering fatigue test can be read directly from this probability contour. The test result of the new wheel can be added into the set of historical test data and the failure probability contour is updated. Same procedure is directly applied to the fatigue prediction of dynamical radial fatigue test. At this point we only have 20 historical test data to construct the failure contour. The prediction will become more and more reliable as the number of historical test data increases.

主题分类 工程學 > 工程學總論
参考文献
  1. (1992).SAE Handbook,4(31),1-16.
  2. Adrov, V. M.(1994).Use of a load spectrum in predicting airframe fatigue damage.Fatigue and Fracture of Engineering Materials and Structures,17(12),1397-1403.
  3. Bannantine, J. A.,J. J. Corner,J. L. Handrock(1990).Fundamentals of Metal Fatigue Analysis.Prentice-Hall, Inc..
  4. De Lorenzo, D. S.,M. L. Hull(1999).Quantification of structural loading during off-road cycling.Journal of Biomechanical Engineering, Transactions of the ASME,121(4),399-405.
  5. Hsu, Y. L,M. S. Hsu(2001).Weight Reduction of Aluminum Disc Wheels under Fatigue Constraints.Computers in Industry,46(2),61-73.
  6. Karandikar, H. M.,W. Fuchs(1990).Fatigue life prediction for wheels by simulation of the roating bending test.SAE Transactions,99,180-190.
  7. Kaumle, F.,R. Schnell(1998).Entwicklungszeit von Leichtmetallradern verkurzen.Materialpruefung/Materials Testing,40,394-398.
  8. Sheikh, A. K.,M. Ahmed,M. A. Badar(1995).Fatigue life prediction of assemblies of roatating parts.International Journal of Fatigue,17(1),35-41.
  9. Shen, M. H.,T. Nicholas(2001).Reliability high cycle fatigue design of gas turbine blading using probabilistic Goodman diagram.Key Engineering Materials,2000,139-160.
  10. Tallian, T. E.(1996).Data-fitted rolling bearing life prediction model-Part Ⅱ: Model fit to the historical experimental database.Tribology Transaction,89(2),259-268.