题名

Developing a Fuzzy MCDM Model via a Benefit/Cost Tradeoff Concept

并列篇名

以一個效益與成本的權衡觀念建構模糊多準則決策模式

DOI

10.29977/JCIIE.200505.0005

作者

朱大中(Ta-Chung Chu);黃國銑(Kuo-Shi Huang);李翰忠(Han-Chung Lee)

关键词

模糊多準則決策 ; alpha-截集 ; 效益 ; 成本 ; 比序 ; Fuzzy MCDM ; α-cuts ; Benefit ; Cost ; Ranking

期刊名称

工業工程學刊

卷期/出版年月

22卷3期(2005 / 05 / 01)

页次

226 - 234

内容语文

英文

中文摘要

本文提出一個「模糊多準則決策」模式之拓展,其中「準則」下「選項」的評等及「準則」的「權重」以模糊數表示之「語意詞」來評估。「準則」區分為「成本」和「效益」兩項。應用「加權正規化效益評估值之總合」和「加權正規化成本評估值之總合」間的「權衡」觀念可將每一「選項」的「最後模糊評估值」以「模糊數」之「alpha-截集」及其運算推導而出。最後利用-「模糊數比序」法將最後「模糊評估值」解模糊來做「選項」之「比序」以制定決策。

英文摘要

A fuzzy multiple criteria decision-making model is suggested, where the ratings of alternatives versus criteria and the importance weights of criteria are assessed in linguistic terms represented by fuzzy numbers. The criteria are categorized into benefit and cost ones. The membership functions for the final fuzzy evaluation values of alternatives are developed by α-cuts and interval arithmetic of fuzzy numbers via a tradeoff concept between the summation of weighted normalized benefit ratings and that of weighted normalized cost ratings. A fuzzy number ranking approach is then used to defuzzify all the final fuzzy evaluation values for the ordering of alternatives. Some properties are discussed and an example demonstrates the feasibility of the proposed model.

主题分类 工程學 > 工程學總論
参考文献
  1. Carlsson, C.,R. Fuller(1996).Fuzzy multiple criteria decision making: Recent developments.Fuzzy Sets and Systems,78,139-153.
  2. Chen, C. T.(2001).A fuzzy approach to select the location of the distribution center.Fuzzy Sets and Systems,118,65-73.
  3. Chen, C. T.(2000).Extensions of the TOPSIS fur group decision-making under fuzzy environment.Fuzzy Sets and Systems,114,1-9.
  4. Chen, S. H.(1985).Ranking fuzzy numbers with maximizing set and minimizing set.Fuzzy Sets and Systems,17,113-129.
  5. Chen, S. J.,C. L. Hwang(1992).Fuzz Multiple Attribute Decision Making
  6. Chu, T. C.(2004).Ranking alternatives via maximizing set and minimizing set based fuzzy MCDM approach.Journal of the Chinese Institute of Engineers,27,153-159.
  7. Chu, T. C.,C. T. Tsao(2002).A novel defuzzifying approach to car evaluation and selection under fuzzy environment.International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,10,309-326.
  8. Deng, H.(1999).Multicriteria analysis with fuzzy pairwisc comparison.International Journal of Approximate Reasoning,21,215-231.
  9. Dubois, D.,H. Prade.(1978).Operations on fuzzy numbers.International Journal of Systems Science,9,613-626.
  10. Kaufmann, A.,M. M. Gupta.(1991).Introduction to Fuzzy Arithmetic: Theory and Application.New York:VanNostrand Reinhold.
  11. Laarhoven, van P. J. M.,W. Pedrycz.(1983).A fuzzy extension of Satty`s priority theory.Fuzzy Sets and Systems,11,229-241.
  12. Liang, G. S.(1999).Fuzzy MCDM based on ideal and anti-ideal concepts.Europeal Journal of Operational Research,112,682-691.
  13. Liang, G. S.,M. J. Wang(1993).A fuzzy multi-criteria decision-making approach fur robot selection.Robotics & Computer-Integrated Manufacturing,10,267-274.
  14. Modarres, M.,S. Sadi-Nezhad(2001).Ranking fuzzy numbers by preference ratio.Fuzzy Sets and Systems,118,429-436.
  15. Ribeiro, R. A.(1996).Fuzzy mulitple attribute decision making: A review and new preference elicitation techniques.Fuzzy Sets and Systems,78,155-181.
  16. Triantaphyllou, E.,C. T. Lin(1996).Development and evaluation of five fuzzy multi-attribute decision-making methods.International Journal of Approximate Reasoning,14,281-310.
  17. Wang, X.,B. B. Kerre(2001).Reasonable properties for the ordering of fuzzy quantities (I) and (Ⅱ).Fuzzy Sets and Systems,118,375-385.
  18. Wang, X.,B. B. Kerre(2001).Reasonable properties for the ordering of fuzzy quantities (I) and (Ⅱ).Fuzzy Sets and Systems,118,387-405.
  19. Yeh, C. H.,H. Deng,H. Pan(1999).Multi-criteria analysis for dredger dispatching under uncertainty.Journal of the Operational Research Society,50,35-43.
  20. Zadeh, L. A.(1976).The concept of a linguistic variable and its application to approximate reasoning, part 1,2 and 3.Information Science,9,43-80.
  21. Zadeh, L. A.(1975).The concept of a linguistic variable and its application to approximate reasoning, part 1,2 and 3.Information Science,8,199-249.