题名

Two-Warehouse Inventory Model with Partial Backordering and Weibull Distribution Deterioration under Inflation

并列篇名

服從韋伯分配之損耗性商品在允許部份補貨及考慮通貨膨脹下之雙倉儲存貨模式

DOI

10.29977/JCIIE.200511.0002

作者

黃惠民(Hui-Ming Wee);游兆鵬(Jonas C. P. Yu);羅時添(S. T. Law)

关键词

雙倉儲 ; 韋伯分配 ; 部份補貨 ; 通貨膨脹 ; Two-warehouse ; Weibull distribution ; Partial backorder ; Inflation

期刊名称

工業工程學刊

卷期/出版年月

22卷6期(2005 / 11 / 01)

页次

451 - 462

内容语文

英文

中文摘要

面對微利時代的來臨,有效的降低成本已成為企業提升競爭力的不二法門,「如何有效地使用倉儲空間」就是企業達成此目標的一項重要課題。本研究主要考慮單一商品,此商品為一種服從二參數韋伯分配的損耗性商品;當商品面臨通貨膨脹且允許部份補貨的現實條件下,在雙倉儲(自有及租賃)的決策選擇上做探討。本研究基於以上的假設建立一數學模式,並以現金流量折現法與軟體程式尋求最佳解。透過數值範例說明與敏感度分析來瞭解影響系統之關鍵因素,試圖尋求出最適當之訂購週期與訂購量,以達到單位總成本現值最小化。

英文摘要

In this study, a two-warehouse inventory model with partial backordering and Weibull distribution deterioration is developed. We consider inflation and apply the discounted cash flow in problem analysis. The discounted cash flow (DCF) and optimization framework are presented to derive the optimal replenishment policy that minimizes the total present value cost per unit time. A numerical example and sensitivity analysis are presented to illustrate the model. When only rented or own warehouse is considered, the present value of the total relevant cost is higher than the case when two-warehouse is considered. From the sensitivity analysis, we show that the total cost of the system is influenced by the deterioration rate, the inflation rate and the backordering ratio.

主题分类 工程學 > 工程學總論
参考文献
  1. Abad, P. L.(2000).Optimal lot size for a perishable good under conditions of finite production and partial back-ordering and lost sale.Computers and Industrial Engineering,38,457-465.
  2. Abad, P. L.(2003).Optimal pricing and lot-sizing under conditions of perishability, finite production and partial backordering and lost sale.European Journal of Operational Research,144,677-685.
  3. Benkherouf, L.(1997).A deterministic order level inventory model for deteriorating items with two storage facilities.International Journal of Production Economics,48,167-175.
  4. Bhunia, A. K.,M. Maity(1998).A two warehouse inventory model for deteriorating items with linear trend in demand and shortages.Journal of Operational Research Society,49,287-292.
  5. Buzacott, J. A.(1975).Economic order quantities with inflation.Operational Research Quarterly,26(3),553-558.
  6. Covert, R. P.,G C. Philip(1973).An EOQ model for items with Weibull distribution deterioration.AIIE Transactions,5,323-326.
  7. Ghare, P. M.,G. F. Schrader(1963).A model for exponential decaying inventory.Journal of Industrial Engineering,14,238-243.
  8. Goyal, S. K.,B.C. Giri(2001).Recent trends in modeling of deteriorating inventory.European Journal of Operational Research,134,1-16.
  9. Ishii, H.,T. Nose(1996).Perishable inventory control with two types of customers and different selling prices under the warehouse capacity constraint.International Journal of Production Economics,44,167-176.
  10. Pakkala, T.P.M.,K.K. Achary(1992).A deterministic inventory model for deteriorating items with two warehouses and finite replenishment rate.European Journal of Operational Research,57,71-76.
  11. Pakkala, T.P.M.,K.K. Achary(1992).Discrete time inventory model for deteriorating items with two warehouses.Opsearch,29,90-103.
  12. Pakkala, T.P.M.,K.K. Achary(1991).A two warehouse probabilistic order level inventory model for deteriorating items.Journal of the Operational Research Society,42,1117-1122.
  13. Papachristos, S.,K. Skouri(2000).An optimal replenishment policy for deteriorating items with time-varying demand and partial-exponential type-backlogging.Operations Research Letters,27,175-184.
  14. Papachristos, S.,K. Skouri(2003).An inventory model with deteriorating items, quantity discount, pricing and time-dependent partial backlogging.International Journal of Production Economics,83,247-256.
  15. Sarma, K. V. S.(1987).A deterministic order level inventory model for deteriorating items with two storage facilities.European Journal of Operational Research,29,70-73.
  16. Skouri, K.,S. Papachristos(2003).Optimal stopping and restarting production items for an EOQ model with deteriorating items and time-dependent partial backlogging.International Journal of Production Economics,81-82,525-531.
  17. Spiegel, M. R.(1960).Applied Differential Equations.
  18. Wang, S. P.(2002).An inventory replenishment policy for deteriorating items with shortage and partial backlogging.Computers and Operations Research,29,2043-2051.
  19. Wee, H. M.(1997).A replenishment policy for item with a price-dependent demand and a varying rate of deterioration.Production Planning and Control,8(5),494-499.
  20. Wee, H. M.(1999).Deteriorating inventory model with quantity discount, pricing and partial backordering.International Journal of Production Economics,59,511-518.
  21. Wee, H. M.,P.C. Yang,C. C. Shih(2002).An Inventory Model with Deteriorating Items under Permissible Delay in Payments.Journal of the Chinese Institute of Industrial Engineering,19(6),116-128.
  22. Wee, H. M.,S. T. Law(1999).Economic production lot size for deteriorating items taking account of the time-value of money.Computers and Operations Research,26,545-558.
  23. Wee, H. M.,S. T. Law(2001).Replenishment and pricing policy for deteriorating items taking account of the time-value of money.International Journal of Production Economics,71,213-220.
  24. Wu, M.Y.,H. M. Wee(2001).Buyer-Seller Joint Cost for Deteriorating Items with Multiple Lot-Size Deliveries.Journal of the Chinese Institute of Industrial Engineering,18(1),109-119.
  25. Yang, H. L.(2004).Two-warehouse inventory models for deteriorating items with shortage under inflation.European Journal of Operational Research,157,344-356.
  26. Zhou, Y. W.(2003).A multi-warehouse inventory model for items with time-varying demand and shortages.Computers and Operations Research,30,2115-2134.
被引用次数
  1. Lu, Huei-Fu(2008).A FUZZY NEWSVENDOR PROBLEM WITH HYBRID DATA OF DEMAND.工業工程學刊,25(6),472-480.
  2. 游兆鵬、陳偉明(2011)。損耗性商品於二階供應鏈中考慮信用交易問題之雙倉存貨策略。運籌與管理學刊,10(1),1-16。