题名

An Alternative P-Value Test Approach to Tests of Mean for Normal Population with Fuzzy Data

并列篇名

新觀點之P值檢定法於模糊資料常態母體平均數的檢定

DOI

10.29977/JCIIE.200511.0005

作者

蔡長鈞(Chang-Chun Tsai);陳正哲(Cheng-Che Chen)

关键词

模糊集合 ; 模糊數 ; 假設檢定 ; P值 ; fuzzy sets ; fuzzy number ; hypothesis testing ; p-value

期刊名称

工業工程學刊

卷期/出版年月

22卷6期(2005 / 11 / 01)

页次

485 - 496

内容语文

英文

中文摘要

本研究建議一個新觀點之P值檢定法,在模糊資料下進行常態母體平均數之統計檢定。實務上,本方法可應用於製造環境中關於平均品質特性之檢定。在平均數之檢定中,由於母體變異數已知時之模糊檢定統計量與模糊資料的函數關係不同於母體變異數未知之情況,因此本研究根據模糊數之α截集分別建立模糊檢定統計量之歸屬函數,再由所得之歸屬函數計算出一個新觀點之P值,將此P值與顯著水準比較後即可下統計決策。最後,由兩個例子來說明本方法之應用。

英文摘要

This paper proposes an alternative p-value test approach to proceed statistical tests of mean for normal population with fuzzy data. In real-world applications, the approach is often used in tests of average quality characteristics in manufacturing environments. In the proposed approach, the membership function of fuzzy test statistic is first constructed based on the α-cuts of fuzzy numbers. Since the function relationship between fuzzy test statistic and fuzzy data under known population variance is different from that under unknown population variance, we use two methods to construct the membership function under known and unknown population variance environment respectively. An alternative p-value is then calculated according to this membership function. Consequently, a statistical decision can be made by comparing the alternative p-value with the significance level. Two numerical examples are given for illustration.

主题分类 工程學 > 工程學總論
参考文献
  1. Arnold, B. F.(1995).Statistical tests optimally meeting certain fuzzy requirements on the power function and on the sample size.Fuzzy Sets and Systems,75,365-372.
  2. Casals, M. R.,M. A. Gil(1989).A note on the operativeness of Neyman-Pearson tests with fuzzy information.Fuzzy Sets and Systems,30,215-220.
  3. Casals, M. R.,M. A. Gil,P. Gil(1986).On the use of Zadeh`s probabilistic definition for testing statistical hypotheses from fuzzy information.Fuzzy Sets and Systems,20,175-190.
  4. Delgado, M.,J. L. Verdegay,M. A. Vila(1985).Testing fuzzy hypotheses. A Bayesian approach.Approximate Reasoning In Expert Systems.
  5. Grzegorzewski, P.(2000).Testing statistical hypotheses with vague data.Fuzzy Sets and Systems,112,501-510.
  6. Grzegorzewski, P.(2001).Fuzzy tests-defuzzification and randomization.Fuzzy Sets and Systems,118,437-446.
  7. Kruse, R.,K. D. Meyer(1988).Confidence intervals for the parameters of a linguistic random variable.Combining Fuzzy Imprecision with Probabilistic Uncertainty in Decision Making.
  8. LINDO Systems Inc.(1999).LINGO User`s Guide.
  9. Liu, S. T.,C. Kao(2002).Fuzzy measures for correlation coefficient of fuzzy numbers.Fuzzy Sets and Systems,128,267-275.
  10. Mendenhall, W.,D. D. Wackerly,R. L. Scheaffer(1998).Mathematical Statistics with Applications.
  11. Montenegro, M.,M. R. Casals,M. A. Lubiano,M. A. Gil(2001).Two-sample hypothesis tests of means of a fuzzy random variable.Information Science,133,89-100.
  12. Saade, J. J.(1994).Extension of fuzzy hypothesis testing with hybrid data.Fuzzy Sets and Systems,63,57-71.
  13. Saade, J. J.,H. Schwarzlander(1990).Fuzzy hypothesis testing with hybrid data.Fuzzy Sets and Systems,35,197-212.
  14. Son, J. C.,I. Song,H. Y. Kim(1992).A fuzzy decision problem based on the generalized Neyman-Pearson criterion.Fuzzy Sets and Systems,47,65-75.
  15. Watanabe, N.,T. Imaizumi(1993).A fuzzy statistical test of fuzzy hypotheses.Fuzzy Sets and Systems,53,167-178.
  16. Zadeh, L. A.(1978).Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems,1,3-28.
  17. Zadeh, L. A.(1968).Probability measures of fuzzy events.J. Math. Anal. Appl.,23,421-427.
  18. Zimmermann, H. J.(1996).Fuzzy Set Theory and Its Applications.