题名

Double Simulated Annealing for Functional MRI Analysis

并列篇名

使用雙重模擬退火法於腦部功能性磁振造影影像分析之研究

DOI

10.29977/JCIIE.200511.0006

作者

葉進儀(Jinn-Yi Yeh);傅家啓(Ja-Chih Fu)

关键词

功能性磁振造影影像 ; 模擬退火法 ; ROC曲線 ; 相似度分析 ; 活化區 ; functional magnetic resonance imaging ; simulated annealing ; receiver-operating characteristic ; similarity analysis ; activation area

期刊名称

工業工程學刊

卷期/出版年月

22卷6期(2005 / 11 / 01)

页次

497 - 508

内容语文

英文

中文摘要

本研究使用雙重模擬退火法,針對功能性磁振造影產生的影像加以分析,第一個模擬退火法先去除頭蓋骨以外的部分,剩下之影像再由第二個模擬退火法找出活化區的位置,而績效評估方式採用繪製ROC(Receiver Operating Characteristic)曲線、相似度分析與比較其他分析的方法,例如兩樣本t檢定法、二個數列的交互相關係數及一般的線性組合等方法,實驗結果發現,雙重模擬退火法比其他方法更能正確地分辨出功能性磁振造影之活化區。

英文摘要

This report proposes a double simulated annealing (DSA) for functional magnetic resonance image (fMRI) analysis. The first simulated annealing (SA) is used to disconnect the brain from the skull. The second SA is applied to locate the activation area of the fMRIs. The performance evaluation of this approach includes receiver-operating characteristic (ROC) analysis, similarity analysis, and comparisons with other analytical methods such as classical SA (CSA), a t-Test, cross-correlation (CCR), and a general linear model (GLM). Experimental results show that the proposed algorithm can get better solutions than other approaches.

主题分类 工程學 > 工程學總論
参考文献
  1. Baker, J.R.,R.M. Weisskoff,C.E. Stern(1994).Statistical assessment of functional MRI signal change.Proceedings of the 2nd Annual Meeting of the Society of Magnetic Resonance.
  2. Bandettini, P.A.,A. Jesmanowicz,E.C. Wong,J.S. Hyde(1993).Processing strategies for time-course data sets in functional MRI of the human brain.Magnetic Resonance in Medicine,30,161-173.
  3. Baumgartner, R.,C. Windischberger,E. Moser(1998).Quantification in functional magnetic resonance imaging: fuzzy clustering vs. correlation analysis.Magnetic Resonance Imaging,16,115-125.
  4. Baumgartner, R.,L. Ryner,W. Richter,R. Summers,M. Jarmasz,R. Somorjai(2000).Comparison of two exploratory data analytical methods for fMRI: fuzzy clustering vs. principal component analysis.Magnetic Resonance Imaging,18,89-94.
  5. Baumgartner, R.,R. Somorjai,R. Summers,W. Richter(2001).Ranking fMRI time courses by minimum spanning trees: assessing coactivation in fMRI.NeuroImage,13,734-742.
  6. Chen, S.,B.L. Luk(1999).Adaptive simulated annealing for optimization in signal processing applications.Signal Processing,79,117-128.
  7. Chuang, K.,M. Chiu,C. Lin,J. Chen(1999).Model-free functional MRI analysis using Kohonen clustering neural network and fuzzy C-means.IEEE Transactions on Medical Imaging,18(12),1117-1128.
  8. Constable, R.T.,G. McCarthy,T. Allison,A.W. Anderson,J.C. Gore(1993).Functional Brain imaging at 1.5 T using conventional gradient echo MR imaging technique.Magnetic Resonance Imaging,11,451-459.
  9. Dimitriadou, E.,M. Barth,C. Windischberger,K. Hornik,E. Moser(2004).A quantitative comparison of functional MRI cluster analysis.Artificial Intelligence in Medicine,31,57-71.
  10. Wellcome Department of Imaging Neuroscience
  11. Friston, K.J.,P. Jezzard,R. Turner(1994).Analysis of functional MRI time-series.Human Brain Mapping,1,153-171.
  12. Gavrilescu, M.,M.E. Shaw,G.W. Stuart,P. Eckersley(2002).Simulation of the effects of global normalization procedures in functional MRI.NeuroImage,17,532-542.
  13. Golay, X,S. Kollias,G. Stoll,D. Meier,A. Valavanis,P. Boesiger(1998).A new correlation-based fuzzy logic clustering algorithm for fMRI.Magnetic Resonance in Medicine,40,249-260.
  14. Karayiammis, N.B.,P. Pai(1999).Segmentation of magnetic resonance images using fuzzy algorithms for learning vector quantization.IEEE Transactions on Medical Imaging,8(2),172-180.
  15. Kim, T.,L. Al-Dayeh,M. Singh(1999).FMRI artifacts reduction using Bayesian image processing.IEEE Transactions on Nuclear Science,46(6),2134-2140.
  16. Kirkpatrick, S.,C.D. Gelatt,M.P. Vechi(1983).Optimization by simulated annealing.Science,220(4598),671-680.
  17. Lange, N.,S.C. Strother,J.R. Anderson,F.A. Nielsen(1999).Plurality and resemblance in fMRI data analysis.NeuroImage,10,282-303.
  18. Pal, N.R.,J.C. Bezdek,E.C.-K. Tsao(1993).Generalized clustering networks and Kohonen`s self-organizing scheme.IEEE Transactions on Neural Networks,4,549-556.
  19. Shan, Z.Y.,G.H. Yue,J.Z. Liu(2002).Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images.NeuroImage,17,1587-1598.
  20. Singh, M.,H. Kim,T. Kim,D. Khosla(1994).Functional at 1.5T.IEEE Transactions on Nuclear Science,41(4),1649-1655.
  21. Singh, M.,L. Al-Dayeh,P. Petel,T. Kim,C. Guclu,O. Nalcioglu(1998).Correction for head movements in multi-slice EPI functional MRI.IEEE Transactions on Nuclear Science,45(4),2162-2166.
  22. Skudlarski, P.,R.T. Constable,J.C. Gore(1999).ROC analysis of statistical methods used in functional MRI: individual subjects.NeuroImage,9,311-329.
  23. Starck, V.(1996).Implementation of simulated annealing optimization method for APLAC circuit simulator.Finland:Master`s Thesis, Electrical Engineering, Helsinki University of Technology, Espoo.
  24. Sychra, J.J.,P.A. Bandettini,N. Bhattacharya,Q. Lin(1994).Synthetic images by subspace transforms I: principal components images and related filters.Medical Physics,21,193-201.
  25. Van Erkel, A.R.,P.M. Th. Pattynama(1998).Receiver operating characteristic (ROC) analysis: basic principles and applications in radiology.European Journal of Radiology,27,88-94.