题名

Further Exmination to Fuzzy Exponential Smoothing Model

并列篇名

深度探討模糊指數平滑模式

DOI

10.29977/JCIIE.200511.0008

作者

曹銳勤(Ruey-Chyn Tsaur)

关键词

預測 ; 指數平滑模式 ; 模糊指數平滑模式 ; 灰色模式GM 1,1 ; 模糊限制式 ; Forecasting ; exponential smoothing model ; fuzzy exponential smoothing model ; grey model GM 1,1 ; fuzzy constraint

期刊名称

工業工程學刊

卷期/出版年月

22卷6期(2005 / 11 / 01)

页次

521 - 542

内容语文

英文

中文摘要

模糊指數平滑模式對於資料量稀少或系統結構模糊不清之問題,能求解吻合資料未來趨勢的外差模糊預測值,以成功求解未來不確定高的短期預測問題。為了提高模糊指數平滑模式的可應用性,此模式已成功於研究並提出求解趨勢及季節型資料之問題。然而,模糊指數平滑模式有兩個特性尚未被清楚的討論。首先,以灰色模式GM(1,1)估計的前期平滑值需被進一步討論與確認。第二,模糊指數平滑模式中的模糊限制式之容忍值如何取捨需進一步的解釋。因此,在此研究中,我們針對上述之二問題加以深度探討以提高模糊指數平滑模式的可應用性。並以一範例舉例說明。

英文摘要

The fuzzy exponential smoothing model has been used for short-term forecasting with a minimum of collected data or unknown system structure to determine a better extrapolative interval in a fuzzy set for an unknown future trend. In order to enlarge its applications, this model has been investigated and proposed for solving trend datum and seasonal datum. However, two characters in the fuzzy exponential smoothing model have never been clearly discussed. First, the old smoothed values estimated from the grey model GM(1,1) need further discussion and clarification. Second, the meanings of the tolerance values of the fuzzy constraints in the fuzzy exponential smoothing model require further elucidation. Therefore, in this study, in-depth examinations of fuzzy exponential smoothing model are carried out in order to elucidate the above two problems and to enhance the abilities of the fuzzy exponential smoothing model. An example is given for illustration.

主题分类 工程學 > 工程學總論
参考文献
  1. Deng, L.J.(1986).Grey Forecasting and Decision.
  2. Hanke, J.E.,A.G Reitsch(1998).Business Forecasting.
  3. Hsu, C.I.,Y.H. Wen(1998).Improved grey prediction models for the trans-pacific air passenger market.Transportation Planning and Technology,22(2),87-108.
  4. Montgomery, D.C.,E.A. Peck(1982).Introduction to Linear Regression Analysis.
  5. Pantazopoulos, S.N.,C.P. Pappis(1996).A new adaptive method for extrapolative forecasting algorithms.European Journal of Operational Research,94,106-111.
  6. Tanaka, H.,S. Uejima,K. Asai(1982).Fuzzy linear model, "Fuzzy linear regression model,".IEEE Trans. System, Man and Cybernet,12,903-907.
  7. Tsaur R.C.(2001).Fuzzy exponential smoothing model by grey forecasting values.Journal of the Chinese Institute of Industrial Engineers,18(6),95-103.
  8. Tsaur, R.C.(2003).Solving seasonal datum by fuzzy exponential smoothing model.International Journal of Systems Science.
  9. Tsaur, R.C.(2003).Forecasting by fuzzy double exponential smoothing model.International Journal of Computer Mathematics,8(11),1351-1361.
  10. Wang, H.F.,R.C. Tsaur(2000).Insight of a fuzzy regression model.Fuzzy Sets and Systems,112,355-369.
  11. Zadeh, L. A.(1975).The concept of a linguistic variable and its application to approximate reasoning I.Information Sci.,8,199-249.
  12. Zimmermann, H.J.(1987).Fuzzy Sets, Decision Making, and Expert Systems.