题名

An Alternative Method for Prediction Intervals of an Order Observation from One-Parameter Exponential Distribution Based on Censored Sample

并列篇名

於設限資料下對具有一個參數的指數分配求次序觀測值的預測區間

DOI

10.29977/JCIIE.200601.0008

作者

吳聰慧(Tsong-Huey Wu);陸海林(Hai-Lin Lu)

关键词

基準量 ; 多元型二設限樣本 ; 指數分配 ; 近似最大概似估計 ; prediction intervals ; order statistics ; Monte Carlo simulation ; one-parameter exponential distribution

期刊名称

工業工程學刊

卷期/出版年月

23卷1期(2006 / 01 / 01)

页次

80 - 90

内容语文

英文

中文摘要

本文對於具有一個參數的指數分配中,樣本數為n的多元型二設限資料,提出適當的基準量,更精確地推估未來第j個元件次序觀測值的預測區間。另外,在相同之設限樣本下,討論其近似預測區間,最佳線性不偏估計,與近似最大概似估計。在實際應用上,對於壽命試驗的耐用時間,可以預測出系統大小為n之第j個元件的故障時間。最後,並以兩個實際例子說明。

英文摘要

In the paper, we construct a more precise prediction interval of the jth order observation from some pivotal quantities for the one-parameter exponential distribution based on Type Ⅱ censored samples. Our method is more general in the sense that it can be applied to any data scheme. From the illustrated examples and the results of simulation, the performances of our method are better than the widely-used methods of Mann and Grubbs [12] and Kaminsky and Nelson [5,6]. For further study, our method is easily applied to other location and scale family distributions.

主题分类 工程學 > 工程學總論
参考文献
  1. Balakrishnan, N.,C. A. Cohen(1991).Order statistics and inference: estimation methods.Academic Press, Inc..
  2. Balasubramanian, K.,N. Balakrishnan(1992).Estimation for one-and two-parameter exponential distributions under multiple type-Ⅱ censoring.Statistische Hefte
  3. Fernandez, A. J.(2000).On maximum likehood prediction based on Type II doubly censored exponential data.Metrika
  4. Grubbs, F. E.(1971).Approximate fiducial bounds for the reliability of a series system for which each component has an exponential time-to-fail distribution.Technometrics,13,865-871.
  5. Kaminsky, K.S.,P. I. Nelson(1974).Prediction intervals for the exponential distribution using subsets of the data.Technometrics,16,57-59.
  6. Kaminsky, KS.,P. I. Nelson(1975).Best linear unbiased prediction of order statistics in location and scale families.Journal American Statistical Association,70,145-150.
  7. Kapur, K. C.,L. R. Lamberson(1977).Reliability in Engineering Design,New York:
  8. Lawless, J. F.(1971).A prediction problem concerning samples from the exponential distribution, with application to life testing.Technometrics
  9. Lawless, J. F.(1982).Statistical Models and Methods for Lifetime Data,New York:
  10. Leemis, L. M.,L. H. Shih(1989).Exponential parameter estimation for data sets containing left and right censored observation.Communications in Statistics, B.
  11. Likes J.(1974).Prediction of the ordered observation for the two-parameter exponential distribution.Technometrics
  12. Mann, N. R.,F. E. Grubbs(1974).Chi-square approximation for exponential parameters, prediction intervals and beta percentiles.Journal of the American Statistical Association,69,654-661.
  13. Ogunyemi, O. T.,P. I. Nelson(1997).Prediction of gamma failure time.IEEE Transactions on Reliability.
  14. Raqab, M. Z.(1995).On maximum likelihood prediction of the exponential distribution based on doubly Type II censored samples.Pakistan Journal of Statistical
  15. Wu, J. W., H. L. Lu, C. H. Chen,C. H. Yang(2004).A note on the prediction intervals for a future ordered observation from a Pareto distribution.Quality & Quantity