题名

Dynamic Multi-Response Experiments by Backpropagation Networks and Desirability Functions

并列篇名

以倒傳遞網路及望想函數分析動態多品質特性實驗

DOI

10.29977/JCIIE.200607.0002

作者

張旭華(Hsu-Hwa Chang)

关键词

倒傳遞網路 ; 望想函數 ; 動態多品質 ; 參數設計 ; 績效衡量 ; backpropagation network ; desirability function ; dynamic multi-response ; parameter design ; performance measurement

期刊名称

工業工程學刊

卷期/出版年月

23卷4期(2006 / 07 / 01)

页次

280 - 288

内容语文

英文

中文摘要

目前雖然有很多成熟的技巧分析參數設計,但處理處理動態多品質問題的方法則較缺乏。本研究利用倒傳遞網路及望想函數提出一個新的方法以分析動態多品質特性問題;藉由所提出的一個新的績效衡量指標以評估不同型態的動態反應值,並轉換為單一指標。所提出的方法乃利用倒傳遞網路訓練實驗資料以建立動態多品質特性的反應模型,該反應模型能預測出所有參數組合的反應值;透過績效評估可以求得最佳參數組合。本方法藉由分析一組實驗數據展示其有效性。

英文摘要

Although there are some skillful techniques to analyze the parameter design problems, the methods for tackling the dynamic multi-response are rare. This work proposes an approach based on backpropagation neural networks and desirability functions to optimizing parameter design of the dynamic multi-response. A novel performance measurement of dynamic multi-response is developed to apply the desirability function that integrates several different types of dynamic responses into a single index. The proposed approach employs a BPN to construct the response model of the dynamic multi-response system by training the experimental data. The response model is then used to predict all possible multi-responses of the system by presenting full parameter combinations. Through evaluating the performance measurement of the predicted dynamic multi-response, the best parameter setting can be obtained by maximizing the single index. An illustrative example is analyzed to demonstrate the effectiveness of the proposed approach.

主题分类 工程學 > 工程學總論
参考文献
  1. Anjum, M. F.,I. Tasaddug,A. S. Ahaled(1997).Response surface methodology: a neural network approach.European Journal of Operational Research,101,65-73.
  2. Antony, J.(2001).Simultaneous Optimisation of Multiple Quality Characteristics in Manufacturing Processes Using Taguchi's Quality Loss Function.International Journal of Advanced Manufacturing Technology,17(2),134-138.
  3. Castillo, E. D.,D. C. Montgomery,D. R. McCarville(1996).Modified desirability functions for multiple response optimization.Journal of Quality Technology,28,337-3445.
  4. Chapman, R. E.(1995).Photochemistry multiple response co-optimization.Quality Engineering,8,31-45.
  5. Chen, L. H.(1997).Designing robust products with multiple quality characteristics.Computes and Operational Research,24(10),937-944.
  6. Chiu, C. C.,C. T. Su,G. H. Yang,J. S. Huang,S. C. Chen,N. T. Cheng(1997).Selection of optimal parameters in gas-assisted injection moulding using a neural network model and the Taguchi method.International Journal of Quality Science,2,106-120.
  7. Derringer, G.,R. Suich(1980).Simultaneous optimization of several response variables.Journal of Quality Technology,12,214-219.
  8. Fausett, L.(1994).Fundamentals of Neural Networks: an architectures, algorithms, and applications
  9. Harrington, E. C.(1965).The desirability function.Industrial Quality Control,21,494-498.
  10. Hsu, C. M.,C. T. Su,D. Liao(2004).Simultaneous of the broadband tap coupler optical performance based on neural works and exponential desirability functions.International Journal of Advanced Manufacturing Technology,23,896-902.
  11. Khuri, A. I.,M. Conlon(1981).Simultaneous optimization of multiple responses represented by polynomial regression functions.Technometrics,23,363-375.
  12. Kim, K. J.,D. K. J.,Lin(2000).Simultaneous optimization of mechanical properties of steel by maximizing exponential desirability functions.Applied Statistics,49(3),311-325.
  13. Layne, K. L.(1995).Method to determine optimum factor levels for multiple responses in designed experimentation.Quality Engineering,7,649-656.
  14. Lesperance, M. L.,S. M. Park(2003).GLMs for the analysis of robust design with dynamic characteristics.Journal and Quality Technology,35(3),253-263.
  15. Logothetis, N.,A. Haigh(1988).Characterizing and optimizing multi-response processes by the Taguchi method.Quality and Reliability Engineering International,4,159-169.
  16. Lunani, M.,V. N. Nair,G. S. Wasserman(1997).Graphical Methods for robust design with dynamic characteristics.Journal of Quality Technology,29,327-338.
  17. McCaskey, S. D.,K. L. Tsui(1997).Analysis dynamic robust design experiments.International Journal of Production Research,35(6),1561-1574.
  18. Park, Y. G.,B. J. Yum(2003).Development of performance measures for dynamic parameter design problems.International Journal of Manufacturing Technology and Management,5(1/2),91-104.
  19. Pignatiello, J. J.(1993).Strategy for robust multi-response quality engineering.IIE Transaction,25,5-15.
  20. Rowlands, H.,M. S. Packianather,E. Oztemel(1996).Using artificial neural networks for experimental design in off-line quality.Journal of Systems Engineering,6,46-59.
  21. Su, C. T.,L. I. Tong(1997).Multi-response robust design by principal component analysis.Total Quality Management,8,409-416.
  22. Tai, C. Y.,T. S. Chen,M. C. Wu(1992).An enhanced Taguchi method for optimizing SMT processes.Journal of Electronics Manufacturing,2,91-100.
  23. Tong, L. I.,C. H. Wang(2000).Optimizing multi-response problems in a dynamic system by grey relational grade analysis.Journal of the Chinese Institute of Industrial Engineers,17(2),147-156.
  24. Tong, L. I.,C. H. Wang,C. C. Chen,C. T. Chen(2004).Dynamic multiple responses by ideal function analysis.European Journal of Operational Research,156,433-444.
  25. Tong, L. I.,C. T. Su,C. H. Wang(1997).The Optimization of multi-response problems in the Taguchi method.The International Journal of Quality & Reliability Management,14(4),367-176.
  26. Tong, L. I.,Su, C. T.(1997).Optimizing multi-response problems in the Taguchi method by fuzzy multiple attribute decision making.Quality and Reliability Engineering International,13,25-34.
  27. Tsui, K. L.(1999).Modeling and analysis of dynamic robust design experiments.IIE Transactions,31,1113-1122.
  28. Wasserman, G. S.(1996).Parameter design with dynamic characteristics: a regression perspective.Quality and Reliability Engineering International,12,113-117.
被引用次数
  1. Jhang, Jhy Ping(2016).The Optimal Parameters Design of Multiple Quality Characteristics for the Welding of Aluminum Magnesium Alloy.品質學報,23(3),201-211.
  2. Tsai, Tsung-Nan(2009).MODELING AND OPTIMIZATION OF REFLOW THERMAL PROFILING OPERATION: A COMPARATIVE STUDY.工業工程學刊,26(6),480-492.
  3. Wu, Pei-Yu,Jhang, Jhy-Ping(2017).APPLICATION OF ARTIFICIAL NEURAL NETWORK AND TOPSIS FOR THE OPTIMAL THRUST OF SMT DISPENSING PROCESS PARAMETERS.品質學報,24(5),324-334.
  4. (2012).Fabrication and turning of Al/SiC/B4C hybrid metal matrix composites optimization using desirability analysis.工業工程學刊,29(8),515-525.