题名

Probabilistic Models for Software Quality Analysis

并列篇名

機率式的軟體品質分析模式

DOI

10.29977/JCIIE.200607.0007

作者

王鄭慈(Cheng-Tzu Wang);駱至中(Chih-Chung Lo);簡添福(Tien-Fu Jean)

关键词

軟體品質 ; 軟體衡量 ; 堆疊基馬可夫程序 ; software quality ; software measurement ; stack-based Markov process

期刊名称

工業工程學刊

卷期/出版年月

23卷4期(2006 / 07 / 01)

页次

328 - 336

内容语文

英文

中文摘要

在軟體工程領域中如何改善軟體的品質是一個重要的議題。因此,在開發過程中,軟體工程師必須要能儘早掌握軟體的品質資訊,方能有效提昇並確保軟體品質。在這篇論文中,我們根據不同的衡量觀點,提出五種不同的堆疊基馬可夫模式來評估軟體複雜度,論文中說明並分析這些模式與軟體品質之間的關係。實證結果顯示,本論文所提出的堆疊基馬可夫模式與軟體品質有正向關係。所以,這些研究結果可以幫助開發者在軟體開發過程的初期就可由系統程式碼中分析及預測軟體的品質狀況,進而找出其間問題所在並加以改良,資訊系統的軟體品質也因此獲得改善。

英文摘要

Improving the qualities of software systems is an important issue in software engineering. Software engineers need to know the information about software quality as early as possible in software development. Measuring the program complexity of software systems is the most straightforward approach to analyze software quality. In his paper, we propose five Stack-based Markov (SBM) models to measure program complexity from different viewpoints. Relationships between each proposed SBM model and software quality are investigated. Empirical study reveals that these SBM models have positive impact on software quality factors. These findings could help software development organizations to predict and control their software quality in the early stage of software development.

主题分类 工程學 > 工程學總論
参考文献
  1. Conte, S. D.,H. E. Dunsmore,V. Y. Shen(1986).A Software Engineering Metrics and Models
  2. Edwards, W. R.(1990).Information source models for software analysis.Proceedings of the 13th Minnowbrook Workshop on Software Engineering,8-17.
  3. Evangelist, M.(1984).An analysis of control flow complexity.Proceedings of IEEE COMPSAC-84,388-396.
  4. Feton, N.,S. L. Pfleeger(1997).Software Metrics: A Rigorous & Practical Approach
  5. Frakes, W. B.,G. Succi(2001).An industrial study of reuse, quality, and productivity.The Journal of Systems and Software,57,99-106.
  6. Halstead, M. H.(1979).Advances in software science.Advances in Computers,18,122-129.
  7. Harrison, W. A.,H. I. Magel(1981).A complexity measure based on nesting level.ACM SIGPLAN Notices,16(3),69-74.
  8. Kan, S. H.(2002).Metrics & Models is Software Quality Engineering
  9. Laudon, K. C.,J. P. Laudon(2004).Management Information Systems, the 8th edition
  10. Leung, H. K. N(2001).Quality metrics for intranet applications.Information & Management,38,137-152.
  11. McCabe, T. J.(1976).A complexity measure.IEEE Transactions on Software Engineering,2(4),308-320.
  12. Osmundson, J. S.,J. B. Michael,M. J. Machniak,M. A. Grossman(2003).Quality management metrics for software development.Information & Management,40,799-812.
  13. Shannon, C. E.(1984).A mathematical theory of communication.Bell Systems Technical Journal,27,379-423.
  14. So, S. S.,S. D. Cha,Y. R. Kwon(2002).Empirical evaluation of a fuzzy logic-based software quality prediction model.Fuzzy Sets and Systems,199-208.
  15. Summer, M.(2005).Enterprise Resource Planning
  16. Tayntor, C. B.(2002).Six Sigma Software Development
  17. Thwin, M. T.,T.-S. Quah(2005).Applications of neural networks for software quality prediction using objectoriented metrics.The Journal of Systems and Software,76,147-156.
  18. Wang, C.-T.(1994).Stack-based Markov model analysis of expressions and data dependencies on programs.Proceedings of the 16th Minnowbrook Workshop on Software Engineering,58-79.
  19. Wang, C.-T.(1997).A probabilistic model of software complexity measurement.Proceedings of the 8th International Conference on Information Management,776-782.
  20. Wang, C.-T.,C.-C. Lo,S.-N. Lai,F.-H. Cheng(2000).A stack-based Markov model for measuring complexity of manufacturing information systems.Proceedings of the 5th Annual International Conference on Industrial Engineering-Theory, Applications and Practice,2-26.