题名

Forecasting Analysis by Fuzzy Grey Model GM(1,1)

并列篇名

模糊灰色GM(1,1)預測模式

DOI

10.29977/JCIIE.200609.0006

作者

曹銳勤(Ruey-Chyn Tsaur)

关键词

預測 ; 灰色模式GM(1,1) ; 模糊集合 ; 模糊灰色模式GM(1,1) ; 稀少資料 ; forecasting, grey model GM(1,1) ; fuzzy set ; fuzzy grey model GM(1,1) ; limited data

期刊名称

工業工程學刊

卷期/出版年月

23卷5期(2006 / 09 / 01)

页次

415 - 422

内容语文

英文

中文摘要

儘管在資料量稀少如四筆的條件下,灰色模式GM(1,1)已成功的被應用於解決工程及管理的相關問題;然而,也由於資料量稀少,決策者從預測值上所獲得的資訊量不足而使得決策品質不佳。由於許多研究結果顯示模糊廻歸、模糊時間序列等模糊預測模式,在資料量稀少及資料為語意資料等不確定的環境下具有良好的預測結果。因此,對於輸入值為實數值且環境存在不確定的條件下,本研究提出映射累加AGO值及模糊參數而求得模糊輸出的預測值。採用此模式,決策者可以獲得一個可能的外插預測區間而得到較充分的預測資訊,減少資訊不充分下的決策損失。最後,以一範例作為說明。

英文摘要

The grey model GM(1,1) has been successfully applied in management and engineering problems with as little as four data. Because of lack of sufficient data, a decision maker obtained too little information from the extrapolative value to make an ineffective decision in grey model GM(1,1). A considerable amount of research has shown that fuzzy forecasting tools such as fuzzy regression and fuzzy time series are powerful forecasting models under an uncertain environment. Therefore, by crisp-input value to obtain AGO value, we propose fuzzy grey model GM(1,1) by mapping AGO value with the fuzzy parameter to forecast fuzzy-output extrapolative value under uncertain and limited data. By the crisp-input and fuzzy-output fuzzy grey model GM(1,1)model, a decision making can obtain more information from the obtained possible forecasting interval and so reduce the possible loss in decision making under uncertainty with limited data. Finally, an example is given for illustration.

主题分类 工程學 > 工程學總論
参考文献
  1. Bardossy, A.,I. Bogardi,L. Duckstein(1990).Fuzzy Regression in Hydrology.Water Resources Research,26(7),1497-1508.
  2. Chiao, C.-H.,W.Y. Wang(2002).Reliability improvement of fluorescent lamp using grey forecasting model.Microelectronics Reliability,42(1),127-134.
  3. Deng, L.J.(1989).Introduction to grey system theory.Journal of Grey System,1(1),1-24.
  4. Deng, L.J.(1986).Grey prediction and decision.
  5. Deng, L.J.(1999).Grey forecasting model in method and application.
  6. Hsu, C.C.,C. Y. Chen(2003).Applications of improved grey prediction model for power demand forecasting.Energy Conversion and Management,44(14),2241-2249.
  7. Hsu, C.I.,Y.H. Wen(2000).Application of grey theory and mutiobjective programming towards airline network design.European Journal of Operational Research,127(1),44-68.
  8. Hsu, L.C.(2003).Applying the grey prediction model to the global integrated circuit industry.Technological Forecasting & Social Change,70(6),563-574.
  9. Lin, C.T.,S.Y. Yang(2003).Forecast of the output value if Taiwan`s opto-electronics industry using the grey forecasting model.Technological Forecasting & Social Change,70(2),177-186.
  10. Moskowitz, H.,K. Kim(1993).On assessing the h value in Fuzzy Linear Regression.Fuzzy Sets and Systems,58(3),303-327.
  11. Song, Q.,B.S. Chissom(1993).Fuzzy time series and its models.Fuzzy Sets and Systems,54(3),269-277.
  12. Tanaka, H.,J. Watada(1988).Possibilistic Linear Systems and their Application to the Linear Regression Model.Fuzzy Sets and Systems,27(3),275-289.
  13. Tanaka, H.,S. Uejima,K. Asai(1982).Fuzzy linear regression model.IEEE Transaction on SMC,12(6),903-907.
  14. Wang, H.F.,R.C. Tsaur(2000).Insight of a fuzzy regression model.Fuzzy Sets and Systems,112(3),355-369.
  15. Wu, H.C.(2003).Fuzzy estimates of regression parameters in linear regression models for imprecise input and output data.Computational Statistics & Data Analysis,42(0.5),203-217.
  16. Zadeh, L. A.(1965).Fuzzy sets.Information Control,8(3),338-353.
  17. Zadeh, L. A.(1975).The concept of a linguistic variable and its application to approximate reasoning-I.Information Sci,8(3),199-249.