题名

A Simple Approach to Adjust Factor Weights in Data Envelopment Analysis

并列篇名

利用統計方法建立資料包絡分析模式之變數權數上下界限

DOI

10.29977/JCIIE.200703.0003

作者

張秀雲(Shiow-Yun Chang);陳天惠(Tien-Hui Chen)

关键词

資料包絡分析 ; 績效評估 ; 權數 ; data envelopment analysis ; weight restrictions ; absolute weight

期刊名称

工業工程學刊

卷期/出版年月

24卷2期(2007 / 03 / 01)

页次

120 - 127

内容语文

英文

中文摘要

應用資料包絡分析模式(data envelopment analysis, DEA)於績效評估時,每一個決策單位都會選擇對其最有利的一組權數,來計算其效率分數。其缺點是每一個決策單位用來計算效率分數的變數權數會有很大的差異。為了減低各評估變數權數的差異,本研究提出以調整上下界限的方式,對各評估變數的權數做限制。此方法可避免求解DEA模式時找不到可行解,或產生過多有效率的決策單位導致區別不佳的情形。本方法亦可應用於整合諸專家意見,或折衝專家意見與原始DEA模式對變數權數的歧異。本文舉二個例子來說明本研究方法,結果顯示本研究方法在彈性與效率的區別力上,有較佳的效果。其中,第二個例子更說明了針對決策單位作排序時,不能使用無效率決策單位的變數權數,否則,在求解DEA模式時,可能產生沒有效率分數為1的決策單位之窘境。

英文摘要

In data envelopment analysis (DEA), each decision-making unit (DMU) incorporates its most favorable set of weights to calculate its efficiency. This results in a set of weights that varies for each DMU. To reduce the variation in factor weight for all DMUs, this study introduces a statistic approach to construct the lower and upper bounds of factor weights. This approach enables the weight bounds be adjusted to avoid the absence of efficient DMU or reduce the number of efficient DMUs. It can also be used to integrate expert opinions or resolve the conflict between the results obtained using DEA model and the experience of experts if expert information is available. Two examples illustrate that this method has merits in both flexibility and discrimination in performance evaluation. Moreover, the second example shows that the weights of inefficient DMUs are not suitable for ranking.

主题分类 工程學 > 工程學總論
参考文献
  1. Chen Y. S.,W. H. A. Wang,T. Chan,Y. T. Liang(2005).Developing a quantitative model to evaluate and compare the performance of hospital medical technologies in Taiwan.Journal of the Chinese Institute of Industrial Engineers,22,430-441.
    連結:
  2. Liu C. M.,H. S. Hsu,S. T. Wang,H. K. Lee(2005).A performance evaluation model based on AHP and DEA.Journal of the Chinese Institute of Industrial Engineers,22,243-251.
    連結:
  3. (1999).LINGO User's Guide.
  4. Allen, R.,A. D. Athanassopoulos,R. G. Dyson,E. Thanassoulis(1997).Weights restrictions and value judgments in data envelopment analysis: Evolution, development and future directions.Annals of Operations research,73,13-34.
  5. Banker, R. D.,A. Charnes,W W.Cooper(1984).Some models for estimating technical and scale inefficiencies in data envelopment analysis.Management Science,30,1078-1092.
  6. Charnes, A.,W. W. Cooper,E. Rhodes(1978).Measuring the efficiency of decision making units.European Journal of Operational Research,2,429-444.
  7. Charnes, A.,W. W. Cooper,Q. L. Wei,Z. M. Huang(1989).Cone ratio data envelopment analysis and multi-objective programming.International Journal of Systems Science,20,1099-1118.
  8. Charnes, A.,W. W. Cooper,Z. M. Huang,D. B. Sun(1990).Polyhedral cone-ratio DEA models with an illustrative application to large commercial banks.Journal of Econometrics,46,73-91.
  9. Cook, W. D.,Y. Roll,A. A. Kazakov(1989).DEA model for measuring the relative efficiency of highway maintenance patrols.INFOR,28,113-124.
  10. Doyle, J.(1995).Multifactor choice for the lazy decision maker: let the alternatives decide.Organizational Behavior and Human Decision Process,62,87-100.
  11. Doyle, J.,R. Green(1994).Efficiency and cross-efficiency in DEA: derivations, meanings and uses.Journal of the Operational Research Society,45,567-578.
  12. Green, R.,J. Doyle(1995).Improving discernment in DEA using profiling: a comment.Omega,24,365-366.
  13. Hu, C. C.,H. L. Li(2004).A company performance measurement by ROIC and DEA: An example of Taiwan IC design house.Journal of the Chinese Institute of Industrial Engineers,21,369-383.
  14. Jenkins, L.,M. Anderson(2003).A multivariate statistical approach to reducing the number of variables in data envelopment analysis.European Journal of Operational Research,147,51-61.
  15. Kao C.,H. T. Hung(2005).Data envelopment analysis with common weights: the compromise solution approach.Journal of the Operational Research Society,56,1196-1203.
  16. Li, X.,G. R. Reeves(1999).A multiple criteria approach to data envelopment analysis.European Journal of Operational Research,115,507-517.
  17. Paradi, J. C.,S. Smithand,C. Schaffnit-Chatterjee(2002).Knowledge worker performance analysis using DEA: an application to engineering design team at Bell Canada.IEEE Transactions on Engineering Management,49,161-172.
  18. Ragsdale, C. T.(2001).Spreadsheet Modeling and Decision Analysis,32
  19. Shang, J.,T. Sueyoshi(1995).A unified framework for the selection of a flexible manufacturing system.European Journal of Operational Research,85,297-315.
  20. Sinuany-Stern Z.,A. Mehrez,Y. Hada(2000).An AHP/DEA methodology for ranking decision making units.International Transactions in Operational Research,7,109-124.
  21. Sinuany-Stern, Z.,L. Friedman(1998).DEA and the discriminant analysis of ratios for ranking units.European Journal of Operational Research,111,470-478.
  22. Stewart, T. J.(1994).Data envelopment analysis and multiple criteria decision making: a response.Omega,22,205-206.
  23. Sueyoshi, T.(2004).Mixed integer programming approach of extended DEA-discriminant analysis.European Journal of Operational Research,152,45-55.
  24. Sueyoshi, T.(1999).DEA-discriminant analysis in the view of goal programming.European Journal of Operational Research,115,546-582.
  25. Sueyoshi, T.,K. Ohnishi,Y. Kinase(1999).A benchmark approach for baseball evaluation.European Journal of Operational Research,115,429-448.
  26. Sueyoshi, T.,S. N. Hwang(2004).A use of nonparametric tests for DEA-discriminant analysis: A methodo logical comparison.Asia-Pacific Journal of Operational Research,21,179-195.
  27. Talluri, S.,K. P. Yoon(2000).A cone-ratio DEA approach for AMT justification.International Journal of Production Economics,66,119-129.
  28. Thompson, R. G.,L. N. Langemeier,C. T. Lee,R. M. Thrall(1990).The role of multiplier bounds in efficiency analysis with application to Kansas farming.Journal of Econometrics,46,93-108.
  29. Troutt M D(1995).A maximum decisional efficiency estimation principle.Management Science,41,76-82.
  30. Wong, Y. H. B.,J. E. Beasley(1990).Restricting weight flexibility in data envelopment analysis.Journal of the Operational Research Society,41,829-835.
被引用次数
  1. 魏慶國、陳亮志、李榮貴(2011)。資料包絡分析法最佳權重之研究—以台灣醫學中心為例。管理與系統,18(3),505-527。
  2. (2019).Incorporating the non-separable characteristic of undesirable outputs into congestion analysis: a case of regional industries in China.工業工程學刊,36(4),27-31.