题名

Application of Possibilistic Linear Programming to Multi-Objective Distribution Planning Decisions

并列篇名

應用可能性線性規劃求解多目標分配規劃決策問題

DOI

10.29977/JCIIE.200703.0001

作者

梁添富(Tien-Fu Liang)

关键词

可能性線性規劃 ; 分配規劃決策 ; 多目標線性規劃 ; 模糊集理論 ; possibilisic linear programming ; distribution planning decisions ; multi-objective linear programming ; fuzzy set theory

期刊名称

工業工程學刊

卷期/出版年月

24卷2期(2007 / 03 / 01)

页次

97 - 109

内容语文

英文

中文摘要

現有探討分配規劃決策(DPD)之文獻數量已累積不少,但傳統方法大多屬於確定性決策模式,且以極小化總成本單一目標為主要考量,對於實務常以同步追求多元化模糊目標之權衡取捨決策明顯不足。本研究的目的在於發展一個互動式可能性線性規劃(PLP)方法,用以求解目標函數及限制式均具模糊/不精確性質之多目標DPD問題。首先,本文建構一符合實務情境的模糊多目標線性規劃DPD模式,內容涵蓋總分配成本及總運輸時間二個極小化目標,限制因素除考量各來源的可供應量及各目的地的預測需求量外,亦將總預算及倉儲空間限制一併納入。其次,分別發展原始模式各不精確目標函數及限制式之求解策略。接著,建構一互動式的系統化求解程序,提供決策者執行及修正模式之適當步驟。最後,特舉一產業個案進行模式測試並與傳統決策模式進行比較,藉以分析及歸納本文PLP方法在實際應用上的重要管理意涵。整體而言,本文所發展的互動式PLP方法除可求得一組有效妥協解及整體決策滿意度外,同時具備彈性的修正程序、提供多元化決策資訊及較高的模式建構與運算效率等正面特色,將可解決傳統DPD模式實際應用程度不足之問題。

英文摘要

In real-world distribution planning decision (DPD) problems, the decision maker (DM) must simultaneously handle conflicting objectives, and input data and related parameters are often imprecise/fuzzy owing to incomplete and/or unavailable information. This work develops an interactive possibilistic linear programming (PLP) method for solving multi-objective DPD problems involving imprecise available supply, forecast demand and unit cost/time coefficients with triangular possibility distributions. The multi-objective PLP model designed here aims to simultaneously minimize the total distribution costs and the total delivery time with reference to available supply constraint at each source, as well as forecast demand and warehouse space constraints at each destination. Additionally, the interactive PLP method provides a systematic framework that facilitates the decision-making process, enabling a DM to interactively modify the imprecise data and related parameters until a satisfactory solution is obtained. An industrial case is presented to demonstrate the feasibility of applying the interactive PLP method to real DPD problems. Consequently, the PLP method yields a set of efficient compromise solutions and overall degree of DM satisfaction with the determined objective values. Especially, several significant finding relating to the practical application of the interactive PLP method are presented.

主题分类 工程學 > 工程學總論
参考文献
  1. Abd El-Washed, W. F.(2001).A multi-objective transportation problem under fuzziness.Fuzzy Sets and Systems,117,27-33.
  2. Bellman R. E.,L. A. Zadeh(1970).Decision-making in a fuzzy environment.Management Science,17,141-164.
  3. Bit, A. K.,M. P. Biswal,S. S. Alam,(1992).Fuzzy programming approach to multicriteria decision making transportation problem.Fuzzy Sets and Systems,50,35-41.
  4. Buckley, J. J.(1988).Possibilistic linear programming with triangular fuzzy numbers.Fuzzy Sets and Systems,26,135-138.
  5. Buckley, J. J.(1990).Stochastic versus possibilistic programming.Fuzzy Sets and Systems,34,43-59.
  6. Chanas S.,D. Kuchta,(1996).A concept of the optimal solution of the transportation problem with fuzzy cost coefficients.Fuzzy Sets and Systems,82,299-305.
  7. Chanas, S.,M. Deigado, J.,L.Verdegay,M. A. Vila(1993).Interval and fuzzy extension of classical transportation problem.Transportation Planning Technology,17,203-218.
  8. Chanas, S.,W. Kolodziejczyk,A. Machaj(1984).A fuzzy approach to the transportation problem.Fuzzy Sets and Systems,13,211-222.
  9. Chen, L. H.,F. C. Tsai(2001).Fuzzy goal programming with different important and priorities.European Journal of Operational Research,133,548-556.
  10. Climaco, J. N.,C. H. Antunes,M. J. Alves(1993).Interactive decision support for multi-objective transportation problem.European Journal of Operational Research,65,58-67.
  11. Hannan, E. L.(1981).Linear programming with multiple fuzzy goals.Fuzzy Sets and Systems,6,235-248.
  12. Hsu, H. M.,W. P. Wang,(2001).Possibilistic programming in production planning of assemble-to-order environments.Fuzzy Sets and Systems,119,59-70.
  13. Hussein, M. L.(1998).Complete solutions of multiple objective transportation problems with possibilistic coefficients.Fuzzy Sets and Systems,93,293-299.
  14. Inuiguchi M.,M. Sakawa(1996).Possible and necessary efficiency in possibilistic multiobjective linear programming problems and possible efficiency test.Fuzzy Sets and Systems,78,231-241.
  15. Lai, Y. J.,C. L. Hwang(1992).A new approach to some possibilistic linear programming problems.Fuzzy Sets and Systems,49,121-133.
  16. Lai, Y. J.,C. L. Hwang(1992).Fuzzy Mathematical Programming: Methods and Applications.Berlin:Springer-Verlag.
  17. Li, L.,K. K. Lai(2000).A fuzzy approach to the multiobjective transportation problem.Computers and Operations Research,27,43-57.
  18. Rimik, J.,J. Rimanek(1985).Inequality relation between fuzzy numbers and its use in fuzzy optimization.Fuzzy Sets and Systems,16,123-138.
  19. Sakawa, M.(1988).An interactive fuzzy satisficing method for multiobjective linear fractional programming problems.Fuzzy Sets and Systems,28,129-144.
  20. Satty, T. L.(1980).The Analytic Hierarchy Process.New York:McGraw-Hill.
  21. Schenkerman S.(1991).Use and abuse of weights in multiple objectives decision support models.Decision Science,2,368-378.
  22. Tanaka, H.,H. Ichihashi,K. Asai,(1984).A formulation of fuzzy linear programming problem based on comparison of fuzzy numbers.Control and Cybernetics,13,185-194.
  23. Tanaka, H.,P. Guo,B. Turksen(2000).Portfolio selection based on fuzzy probabilities and possibility distributions.Fuzzy Sets and Systems,111,387-397.
  24. Thompson, G. L.,Gal, T.,H. J. Greenberg(1997).Network models.Advances in Sensitivity Analysis and Parametric Programming,7-1.
  25. Wang, R. C.,T. F. Liang(2005).Applying possibilistic linear programming to aggregate production planning.International Journal of Production Economics,98,328-341.
  26. Yazenin, A. V.(1997).Fuzzy and stochastic programming.Fuzzy Sets and Systems,22,171-180.
  27. Zadeh L. A.(1965).Fuzzy sets.Information Control,8,338-253.
  28. Zadeh, L. A.(1978).Fuzzy sets as a basis for a theory of possibility.Fuzzy Sets and Systems,1,3-28.
  29. Zimmermann, H.-J.(1996).Fuzzy Set Theory and Its Application.Boston:Kluwer.
  30. Zimmermann, H.-J.(1978).Fuzzy programming and linear programming with several objective functions.Fuzzy Sets and Systems,1,45-56.
  31. Zimmermann, H.-J.(1976).Description and optimization of fuzzy systems.International Journal of General Systems,2,209-215.
被引用次数
  1. (2014).Enhancing mathematical programming models to account for demand priorities increasing as a function of delivery date.工業工程學刊,31(1),51-63.
  2. (2019).A fuzzy multi-objective optimization model for recoverable manufacturing systems in uncertain environments.工業工程學刊,36(1),14-18.