题名

Interval Estimation of Value-At-Risk for Taiwan Weighted Stock Index Based on Extreme Value Theory

并列篇名

應用極值理論於台股指數風險值區間估計

DOI

10.29977/JCIIE.200801.0004

作者

周建新(Jian-Hsin Chou);于鴻福(Hong-Fwu Yu);陳振宇(Zhen-Yu Chen)

关键词

風險值 ; 極值理論 ; 信賴區間 ; Value-at-Risk ; extreme value theory ; confidence interval

期刊名称

工業工程學刊

卷期/出版年月

25卷1期(2008 / 01 / 01)

页次

31 - 42

内容语文

英文

中文摘要

風險值為一衡量市場風險的方法,廣受金融機構所採用。在有關風險值之相關文獻上,雖有許多的論文探討風險值的估計,不過卻多集中在風險值之點估計上。然而,點估計本身亦會產生估計誤差,具有不確定性,且可能會導致錯誤之估計結果。信賴區間為一量化指標,可以有效地用來描述來自抽樣誤差的不確定性;在實際應用上,區間估計較點估計更受喜愛。本文之目的即在應用極值理論,來估計台股指數之風險值,並建構風險值之信賴區間。此外,為了驗證本文模型之估計效率,特與張揖平等[9]所提之方法作一比較。實證結果顯示,使用極值理論所計算出之信賴區間的寬度較小;此意謂應用極值理論來估計台股指數之風險值的信賴區間,較張揖平等[9]所提之方法更有效率。

英文摘要

Value-at-Risk (VaR) is a tool widely used by financial institutions to report and measure market risk. There have been a great number of studies in estimating VaR. Most of which are focused on the point estimation of VaR. However, in estimating a quantity, a point estimate can be misleading, because it may or may not be close to the quantity being estimated. So we cannot know the accuracy of estimating the quantity. Confidence interval (CI) is one of the most useful manners of quantifying uncertain due to ”sampling error”. Besides, the mathematics of interval estimation and hypotheses testing are closely re-lated. Hence, in practical situations, the interval estimation is more preferred than the point estimation. This paper is aimed at applying the extreme value theory (EVT) to evaluate CIs of the VaR of Taiwan weighted stock index. To assess the efficiency of the proposed method in this paper, comparisons with the methods studied in Chang et al. [9] are also made. The empirical results show that the widths of the CIs obtained by the EVT model are narrower than those obtained by Chang et al. [9]. This indicates that the EVT model is more efficient in estimating the VaR of Taiwan weighted stock index than those in Chang et al. [9].

主题分类 工程學 > 工程學總論
参考文献
  1. Chang, Y. P.,M. C. Hung,Y. F. Wu(2003).Estimating the risk of value at risk-the case of Taiwan weighted stock index and TWD/USD exchange rate.Journal of Risk Management,5,195-214.
    連結:
  2. Baillie, R.,R. DeGennaro(1990).Stock Returns and Volatility.Journal of Financial and Quantitative Analysis,25,203-214.
  3. Bali, T. G.(2003).An Extreme Value Approach to Estimating Volatility and Value at Risk.Journal of Business,76,83-108.
  4. Beder, T. S.(1997).VAR-Understanding and Applying Value at Risk.London:Risk.
  5. Bekiros, S. D.,D. A. Georgoutsos(2005).Estimation of value-at-risk by extreme value and conventional methods: a comparative evaluation of their predictive performance.Journal of International Financial Markets, Institutions and Money,15,209-228.
  6. Bollerslv, T.,R. Y. Chou,K. F. Kroner(1992).ARCH modeling in finance.Journal of Econometrics,52,5-59.
  7. Boothe, P.,P. D. Glassman(1987).The statistical distribution of exchange rates.Journal of International Economics,22,297-319.
  8. Broussard, J. P.,G.. G. Booth(1998).The behavior of the extreme values in Germany`s stock index futures: an application to intradaily margin setting.European Journal of Operational Research,104,393-402.
  9. Bystrom, H. N. E.(2004).Managing extreme risks in tranquil and volatile markets using conditional extreme value theory.International Review of Financial Analysis,13,133-152.
  10. Danielsson, J.,C., de Vries(1997).Value-at-risk and Extreme Returns.Disc. Paper No. 273.
  11. Danielsson, J.,P. Hartmann,C. de Vries(1998).The cost of conservatism.Risk,11,101-103.
  12. Darbha, G.(2001).Working paper.India:National Stock Exchange.
  13. David, H. A.(1981).Order Statistics.New York:John Wiley & Sons, Inc..
  14. Duffie, D.,J. Pan(1997).An overview of value at risk.The Journal of Derivatives,7,7-49.
  15. Fernandez, V.(2005).Risk management under extreme events.International Review of Financial Analysis,14,113-148.
  16. Gencay, R.,F. Selcuk(2004).Extreme value theory and value at risk: relative performance in emerging markets.International Journal of Forecasting,20,287-303.
  17. Gencay, R.,F. Selcuk,A. Ulugulyagci(2003).High volatility, thick tails and extreme value theory in value-at-risk estimation.Insurance: Mathematics and Economics,33,337-356.
  18. Ghose, D.,K. F. Kroner(1995).The relationship between GARCH and symmetric stable distributions: finding the source of fat tails in the financial data.Journal of Empirical Finance,2,225-251.
  19. Ho, L. C.,P. Burridge,J. Cadle,M. Theobald(2000).Value at risk: applying the extreme value approach to Asian markets in the recent financial turmoil.Pacific-Basin Finance Journal,8,249-275.
  20. Huschens, S.,G. Bol,V. Nakhaeizadeh,K. H. Vollmer (eds)(1997).Risk Measurement, Econometrics and Neural Networks.Heidelberg:Physica-Verlag.
  21. Jorion, P.(1996).Risk2-measuring the risk in value at risk.Financial Analyst Journal,52,45-56.
  22. Longin, F. M.(2000).From value at risk to stress testing: the extreme value approach.Journal of Baking and Finance,24,1097-1130.
  23. Longin, F. M.(1999).Optimal margin level in futures markets: extreme price movements.Journal of Futures Markets,19,127-152.
  24. McNeil, A.,R. Frey(2000).Estimation of tail-related risk measures for heterocedastic financial time series: an extreme value approach.Journal of Empirical Finance,7,271-300.
  25. Ridder, T.,G. Bol,V. Nakhaeizadeh,K. H. Vollmer (eds)(1997).Risk Measurement, Econometrics and Neural Networks.Heidelberg:Physica-Verlag.
  26. Sen, P. K.,J. M. Singer(1993).Large sample methods in statistics: an introduction with applications.New York:Chapman & Hall.