题名

Reliability Optimization of a Non-Repairable Compound Series-Parallel System

并列篇名

最佳化不可修復之串並聯複合系統的可靠度

DOI

10.29977/JCIIE.200803.0003

作者

王春和(Chung-Ho Wang);徐怡(Yi Hsu)

关键词

可靠度 ; 不可修復系統 ; 反應曲面設計 ; 最佳化 ; reliability ; non-repairable system ; response surface design ; optimization

期刊名称

工業工程學刊

卷期/出版年月

25卷2期(2008 / 03 / 01)

页次

116 - 126

内容语文

英文

中文摘要

本研究針對不可修復之串並聯複合系統,以實驗設計理論爲基礎,利用Box-Behnken Design (BBD)進行反應曲面實驗規劃,再配合蒙地卡羅模擬法,模擬在不同元件參數組合下進行實驗,並取得各元件參數組合下系統之可靠度與製造成本,分別適配可靠度與成本的反應曲面模式,從而建構一個不可修復之串並聯複合系統可靠度的雙反應曲面模式,在滿足成本的前提下最佳化系統可靠度值,經由反應曲面模式可分析元件間的交互作用效應,進而評估並處理元件間的相容性問題。本研究方法能夠更精確地估計系統的可靠度,並將消費者對產品可靠度的需求設計入系統中,轉換爲該產品設計的參數,以決定該系統之最佳元件組合之參數值,並獲得具穩健性與高可靠度的系統,可以大幅縮短產品研發與設計的時間,提供工業界使用。

英文摘要

Product reliability and manufacturing cost are two essential factors in increasing competition within industries. Most studies on predict product or system reliability are based on failure rate models, and assume components of reliability system are independent of one another. The compatibility among components is thus ignored, making predictions of the system reliability imprecise. This study focusing primarily on a non-repairable compound series-parallel system, determines the optimal parameter settings for each component using the dual response surface method (DRSM), simultaneously considering the system reliability and manufacturing cost. The Box-Behnken Design (BBD) from response surface methodology (RSM) is initially used to produce the design, and the experimental data, including system reliability and manufacturing cost, are gathered using Monte Carlo Simulation. The optimal parameter setting associated with system components is determined to obtain a highly reliable and robust system, using DRSM, which is applied to maximize the system’s reliability subject to particular manufacturing cost. Accordingly, the significance of interaction effects is evaluated to elucidate the compatibility among components. The proposed approach can not only accurately predict the system reliability, but also let customer requirements be incorporated into the reliability system, and reduce substantially the time taken to develop of a new product.

主题分类 工程學 > 工程學總論
参考文献
  1. Box, G. E. P.,K. B. Wilson(1951).On the experimental attainment of optimum condition.Journal of the Royal Statistic Society,13,1-45.
  2. Box, G. E. P.,N. R. Draper(1987).Empirical Model Building and Response Surface.New York:Wiley.
  3. Chodos, M. S.,B. Hamersma(1992).Availability and maintenance considerations in telecommunication network design and the use of simulation tools.Proceedings of 3rd AFRICON Conference,Ezulwini Valley, Swaziland:
  4. Coit, David W.,A. E. Smith(1996).Solving the redundancy allocation problem using a combined neural network/genetic algorithm approach.Computers and Operations Research,23,515-523.
  5. Copeland, K. A. F.,P. R Nelson(1996).Dual response optimization via direct function minimization.Journal of Quality Technology,28,331-336.
  6. Del Castillo, E.,D. C. Montgomery(1993).A nonlinear programming solution to the dual response problem.Journal of Quality Technology,25,199-204.
  7. Fyfee, D. E.,W. W. Hines,Lee N. K. Lee(1968).System reliability allocation and a computational algorithm.IEEE Trans. Reliability,R-17,64-69.
  8. Hill, W. J.,W. G. Hunter(1966).A review of response surface methodology: a literature survey.Technometrics,8,571-590.
  9. Kuo, W. H.,Lin, Z. Xu,W. Zhang(1987).Reliability optimization with the Lagrange multiplier and branch-and-bound technique.IEEE Transactions Reliability,36,624-630.
  10. Kuo, W.,V. R., Prasad(2000).An annotated overview of system reliability optimization.IEEE Transactions on Reliability,49,176-187.
  11. Li, D.,Y. Y. Haimes(1992).A decomposition method for optimization of large-system reliability.IEEE Transactions on Reliability,41,183-188.
  12. Lieber, D.,A. Nemirovskii,R. Y. Rubinstein(1991).A fast monte carlo method for evaluating reliability indexes.IEEE Transactions on Reliability,40,81-89.
  13. Lin, D. K. J.,W. Tu(1995).Dual response surface optimization.Journal of Quality Technology,27,34-39.
  14. Mettas, A.(2000).Reliability allocation and optimization for complex system.Proceedings of Annual Reliability and Maintainability Symposium,Los Angeles, CA, USA:
  15. Mettas, A.,M. Savva(2001).The advantages of using analytical methods to analyze non-repairable systems.Proceedings of Annual Reliability and Maintainability Symposium,Philadellphia, PA, USA:
  16. Mohan, C.,K. Shanker(1998).Reliability optimization of complexes systems using random search technique.Microelectronics and Reliability,28,513-518.
  17. Myers, R. H.,D. C. Montgomery(1995).Response Surface Methodology: Process and Product Optimization Using Designed Experiments.New York:Wiley.
  18. Myers, R. H.,W. H. Carter(1973).Response surface techniques for dual response Systems.Technometrics,15,301-317.
  19. Painton, L.,J. Campbell(1995).Genetic algorithms in optimization of system reliability.IEEE Transactions on Reliability,44,172-178.
  20. Prasad, V. R.,W. Kuo(2000).Reliability optimization of coherent Systems.IEEE Transactions on Reliability,49,323-330.
  21. Ronald, E. G.,E. G. Michael(1993).Simulating a weibull posterior using Bayes inference.Proceedings of Annual Reliability and Maintainability Symposium,Atlanta, GA, USA:
  22. Vining, G. G.,R. H. Myers(1990).Combining Taguchi and response surface philosophies: a dual response approach.Journal of Quality Technology,22,38-45.
  23. Yeh, W. C.(2003).A MCS-RSM approach for network reliability to minimize the total cost.International Journal of Advanced Manufacturing Technology,22,681-688.
  24. Yokota, T.,M. Gen,K. Ida(1995).System reliability of optimization problems with several failure modes by genetic algorithm.Japanese Journal of Fuzzy Theory and Systems,7,117-135.