题名

The Design of Acceptance Control Chart for Non-Normal Data

并列篇名

非常態資料下之允收管制圖設計

DOI

10.29977/JCIIE.200803.0004

作者

蔡宗儒(Tzong-Ru Tsai);江俊佑(Jyun-You Chiang)

关键词

允收管制圖 ; Burr分配 ; 偏常態分配 ; 第一型錯誤 ; 第二型錯誤 ; acceptance control chart ; burr distribution ; skew normal distribution ; type Ⅰ error ; type Ⅱ error

期刊名称

工業工程學刊

卷期/出版年月

25卷2期(2008 / 03 / 01)

页次

127 - 135

内容语文

英文

中文摘要

管制圖經常是在常態假設下被設計,但是在某些製造過程中,常態假設經常無法成立。Tsai [12]提出一個偏常態平均數管制圖來監控非常態資料的平均數。他顯示此一管制圖可以有效地改進目前一些已知的管制圖在此一問題平均數監控上的效果。本文以偏常態平均數管制圖為基礎發展出偏常態允收管制圖來監控非常態資料的製程平均數及不良品的比率。當測量值服從對稱分配時,此法可退化到一般的允收管制圖,本文也以兩個實例來舉例說明。由這兩個例子可以看到本文建議的允收管制圖可以很容易地建構,並且也可看出若忽略非常態性將提高管制圖第一型及第二型錯誤的機率。

英文摘要

Control charts often are designed under the normality assumption. But in some manufacturing processes this assumption may not be valid. Tsai [12] developed a skew normal (average) X (subscript L) control chart to monitor the process average for non-normal data. He showed that a considerable improvement over those of existing control charts can be achieved when the skew normal (average) X (subscript L) control chart is used to monitor the process average. Based on the skew normal (average) X (subscript L) control chart, the paper develops a skew normal acceptance control chart to monitor the process average and the fraction of nonconformities for non-normal data. The proposed acceptance control chart reduces to the conventional acceptance control chart as the underlying distribution of measurements is symmetric. Two examples are given for illustration. The presented examples show that the construction of the proposed acceptance control chart is easy, moreover, ignoring the non-normality effect will result in a higher type I or type II error probability.

主题分类 工程學 > 工程學總論
参考文献
  1. Azzalini, A.(1986).Futher results on a class of distributions which includes the normal ones.Statistica,46,199-208.
  2. Azzalini, A.(1985).A class of distributions which includes the normal ones.Scandinavian Journal of Statistics,12,171-178.
  3. Burr, I. W.(1942).Cumulative frequency functions.Annals of Mathematical Statistics,13,215-232.
  4. Cheng, S. W.(1994).Practical implementation of the process capability indices.Quality Engineering,7,239-259.
  5. Chou, C. Y.,C. H. Chen,H. R. Liu(2005).Acceptance control charts for non-normal data.Journal of Applied Statistics,32,25-26.
  6. Dodge, Y.,V. Rousson(1999).The complications of the fourth central moment.The American Statistician,53,267-269.
  7. Duncan, A. J.(1986).Quality Control and Industrial Statistics.Homewood, IL:Richard D. Irwin, Inc..
  8. Freund, R. A.(1957).Acceptance control charts.Industrial Quality Control,12,13-23.
  9. Gupta, R. C.,N. Brown.(2001).Reliability studies of the skew-normal distribution and its application to a strength-stress model.Communications in Statistics: Theory and Methods,30,2427-2445.
  10. Hill, D.(1956).Modified control limits.Applied Statistics,5,12-19.
  11. Montgomery, D.C.(2005).Introduction to Statistical Quality Control.New York:Wiley.
  12. Tsai, T.-R.(2007).Skew normal distribution and the design of control charts for averages.International Journal of Reliability, Quality and Safety Engineering,14,49-63.
被引用次数
  1. 蘇南誠,林佑駿(2020)。新廣義偏斜t分佈:性質與應用。中國統計學報,58(1),45-69。
  2. 蘇志成,張耿睿(2020)。A Study of Acceptance Control Charts for Skew Normal Data。中國統計學報,58(4),272-293。
  3. (2012).Estimation on the lower confidence limit of the breaking strength percentiles under progressive type-II censoring.工業工程學刊,29(1),16-29.