题名

Scheduling for a Single Semiconductor Batch-Processing Machine to Minimize Total Weighted Tardiness

并列篇名

單機批次加工機台以總加權延遲時間爲目標之排程問題

DOI

10.29977/JCIIE.200803.0005

作者

周富得(Fuh-Der Chou);王惠梅(Hui-Mei Wang)

关键词

總加權延遲時間 ; 動態規劃法 ; 批次加工機台 ; 基因演算法 ; total weighted tardiness ; dynamic programming ; batch-processing machine scheduling ; genetic algorithm

期刊名称

工業工程學刊

卷期/出版年月

25卷2期(2008 / 03 / 01)

页次

136 - 147

内容语文

英文

中文摘要

本文係針對單一批次加工機台的排程問題進行探討,此排程問題中工作具有尺寸大小、釋放時間、加工時間、交期以及工作權重等相關屬性。除此之外,批次加工機台在其最大容量的限制下可以同時加工數個工作,並以同一批次內工作最大加工時間爲其機台加工的作業時間。針對此排程問題係以總加權延遲時間作爲衡量排程結果的基準,並提出數學規劃法以及兩種不同混合啟發式演算法-法則爲基的演算法(rule-based algorithm)與基因演算爲基的演算法(GA-based algorithm)。混合啟發式演算法的架構主要分爲二部份:形成工作順序以及形成加工批次。其中在形成加工批次的階段不論是法則爲基的演算法或基因演算爲基的演算法均使用動態規劃法來負責組批工作,而在形成工作順序的階段中,法則爲基的演算法則應用各種不同簡單指派法則來求得工作順序,而基因演算爲基的演算法乃應用基因運算子來產生不同的工作順序。透過本研究的實驗結果得知,最後的排程結果會受到不同工作順序的結果而有明顯的差異,以及基因演算爲基的演算法在工作數小的問題幾乎均可以在極短的時間內得到最佳解,而針對工作數較大的問題此方法亦可以在合理的求解時間內獲得穩定且不錯的近似最佳解。

英文摘要

This paper considers the scheduling problem of a single semiconductor batch-processing machine with job release times, non-identical job sizes, distinct due dates, and weights to minimize the total weighted tardiness. A batch-processing machine can process several jobs simultaneously as a batch, and the processing time of a batch is equal to the longest processing time among all jobs in the batch. According to the literature review of Mathirajan and Sivakumar and the studies of Perez et al., the problem dealt with in this paper has not been studied so far. Therefore, we proposed a mathematical modeling approach and two kinds of hybrid heuristics, including a rule-based algorithm and a genetic algorithm based (GA-based) algorithm in which a dynamic programming (DP) algorithm is integrated to obtain an optimal batching solution for a given job sequence. The experimental results indicated that job sequence is an important factor for the problem. Particularly, the GA-based algorithm significantly outperformed the rule-based algorithm in terms of the quality of solutions for small-job problems. Likewise, the solutions were obviously considerably improved compared with the mathematical modeling approach for large-job problems.

主题分类 工程學 > 工程學總論
参考文献
  1. Balasubramanian, H.,L. Monch,J. Fowler,M. Pfund(2004).Genetic algorithm based scheduling of parallel batch machines with incompatible job families to minimize total weighted tardiness.International Journal of Production Research,42,1621-1638.
  2. Chandru, V.,C. Y. Lee,R. Uzsoy(1993).Minimizing total completion time on batch processing machines.International Journal of Production Research,31,2097-2121.
  3. Chang, P. C.,H. M. Wang(2004).A heuristic for a batch processing machine scheduled to minimize total completion time with non-identical job sizes.International Journal of Advanced Manufacturing Technology,24,615-620.
  4. Chang, P. C.,J. C. Hsieh,C. H. Liu(2006).A case-injected genetic algorithm for single machine scheduling problems with release time.International Journal of Production Economics,103,551-564.
  5. Chou, F. D.,P. C. Chang,H. M. Wang(2005).A hybrid genetic algorithm to minimize makespan for the single batch machine dynamic scheduling problem.International Journal of Advanced Manufacturing Technology,31,350-359.
  6. DuPont, L.,C. Dhaenens-Flipo(2002).Minimizing the makespan on a batch machine with non-identical jobs sizes: an exact procedure.Computers and Operations Research,29,807-819.
  7. Ghazvini, F. J.,L. DuPont(1998).Minimizing mean flow times criteria on a single batch processing machine with non-identical jobs sizes.International Journal of Production Economics,55,273-280.
  8. Kashan, A. H.,B. Karimin,F. Jolai(2006).Effective hybrid genetic algorithm for minimizing makespan on a single-batch-processing machine with non-identical job sizes.International Journal of Production Research,44,2337-2360.
  9. Lawler, E. L.(1977).A pseudo-polynomial algorithm for sequencing jobs to minimize total tardiness.Annals of Discrete Mathematics,1,331-342.
  10. Lee, C. Y.,R. Uzsoy(1999).Minimizing makespan on a single processing machine with dynamic job arrivals.International Journal of Production Research,37,219-236.
  11. Lee, C. Y.,R. Uzsoy,L. A. Martin-Vega(1992).Efficient algorithms for scheduling semiconductor burn-in operations.Operations Research,40,764-774.
  12. Li, C. L.,C. Y. Lee(1997).Scheduling with agreeable release times and due dates on a batch processing machine.European Journal of Operational Research,96,564-569.
  13. Li, S.,G. Li,X. Wang,Q. Liu(2005).Minimizing makespan on a single batching machine with release times and non-identical job sizes.Operations Research Letters,33,157-164.
  14. Mathirajan, M.,A. I. Sivakumar(2006).A literature review, classification and simple meta-analysis on scheduling of batch processors in semiconductor.International Journal of Advanced Manufacturing Technology,29,990-1001.
  15. Mehta, S. V.,R. Uzsoy(1998).Minimizing total tardiness on a batch processing machine with incompatible job families.IIE Transactions,30,165-178.
  16. Melouk, S.,P. Damodaran,P. Y. Chang(2004).Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing.International Journal of Production Economics,87,141-147.
  17. Perez, I. C.,J. W. Fowler,M. Carlyle(2005).Minimizing total weighted tardiness on a single batch process machine with incompatible job families.Computers and Operations Research,32,327-341.
  18. Potts, C. N.,L. N. Van Wassenhove(1991).Single machine tardiness sequencing heuristics.IIE Transactions,23,346-354.
  19. Sung, C. S.,Y. I. Choung(2000).Minimizing makespan on a single burn-in oven in semiconductor manufacturing.European Journal of Operational Research,120,559-574.
  20. Uzsoy, R.(1995).Scheduling batch processing machines with incompatible job families.International Journal of Production Research,33,2605-2708.
  21. Uzsoy, R.(1994).Scheduling a single batch processing machine with non-identical job sizes.International Journal of Production Research,32,1615-1635.
  22. Vepsalainen, A.,T. Morton(1987).Priority rules for job shops with weighted tardiness costs.Management Science,33,1035-1047.
  23. Wang, C. S.,R. Uzsoy(2002).A genetic algorithm to minimize maximum lateness on a batch processing machine.Computers and Operations Research,29,1621-1640.
  24. Zhang, G.,X. Cai,C. Y. Lee,C. K. Wong(2001).Minimizing makespan on a single batch processing machine with nonidentical job sizes.Naval Research Logistics,48,226-240.