题名 |
Evidence from an IC Packaging Foundry by Using a Two-Phase Clustering Methodology |
并列篇名 |
應用二階段分群方法於IC封裝廠 |
DOI |
10.29977/JCIIE.200807.0003 |
作者 |
楊旭豪(Hsu-Hao Yang);劉自強(Tzu-Chiang Liu);蘇旭東(Hsu-Dong Su) |
关键词 |
分群 ; 自我組織地圖 ; 最小跨越樹 ; IC封裝 ; clustering ; self-organizing maps ; minimum spanning tree ; IC packaging |
期刊名称 |
工業工程學刊 |
卷期/出版年月 |
25卷4期(2008 / 07 / 01) |
页次 |
287 - 297 |
内容语文 |
英文 |
中文摘要 |
分群是將物件群集一起使得同群內的物件同質性愈高,而異群間的物件差異性愈明顯。本研究應用二階段分群方法。該方法的第一階段爲自我組織地圖(self-organizing maps, SOM),第二階段包含k-means演算法與以跨越樹爲基(minimum spanning tree-based)的分群方法。跨越樹爲基的分群方法計算效率高,而且比較不受資料分布的影響。因本研究所使用的實務資料數值差異大,因此考慮二種資料轉換,包含min-max正規化與z-score正規化。我們比較的標準是Davies-Bouldin (DB)值與Wilk's lambda值。根據使用台灣某IC封裝廠焊線機資料的測試結果,我們發現,綜合考慮DB值與Wilk's lambda值,在第二階段應用k-means演算法於經過min-max正規化的資料轉換表現比較好。儘管跨越樹爲基的方法並未比k-means演算法優越,但我們發現,就偵測離群值而言,跨越樹爲基的方法比k-means演算法略勝一籌,尤其是資料經過正規化後。 |
英文摘要 |
Clustering is to group objects together so that they are as homogenous as possible within the same cluster while most distinct in different clusters. This paper uses a two-phase clustering methodology that integrates the self-organizing maps (SOM) algorithm in the first phase with the k-means algorithm and the minimum spanning tree-based (MST-based) clustering in the second phase. The MST-based clustering is used because it is efficient to solve tree-type problems and tends to be less sensitive to the geometric shape of data. Two types of data transformations including min-max normalization and z-score normalization are employed to deal with the situation where magnitudes of real-life data differ sharply. We compare clustering results in terms of Davies-Bouldin (DB) value and Wilk's lambda value. According to the results by using the data of Wire Bond machines from a Taiwanese IC packaging foundry, we find that applying the k-means algorithm in the second phase to the data with min-max normalization is better in terms of jointly considering DB value and Wilk’s lambda value. Despite that applying the MST-based clustering in the second phase does not outperform the k-means algorithm; however, we find that the former prevails over the latter in terms of detecting outliers especially when normalized data are used. |
主题分类 |
工程學 >
工程學總論 |
参考文献 |
|