题名

Statistical Testing for Assessing Lifetime Performance index of the Rayleigh Lifetime Products

并列篇名

Rayleigh壽命產品的壽命績效指標評估之統計檢定

DOI

10.29977/JCIIE.200811.0001

作者

李汶娟(Wen-Chuan Lee)

关键词

商品績效 ; 型Ⅱ多重設限樣本 ; Rayleigh分配 ; 均勻最小變異數不偏估計量 ; 檢定程序 ; Product performance ; type Ⅱ multiply censored sample ; Rayleigh distribution ; uniformly minimum variance unbiased estimator ; testing procedure

期刊名称

工業工程學刊

卷期/出版年月

25卷6期(2008 / 11 / 01)

页次

433 - 445

内容语文

英文

中文摘要

在服務(或製造)業中製程能力指標就是用來衡量製程產出商品之品質是否達到規格要求水準。而且壽命績效指標(lifetime performance index)(或望大型製程能力指標(larger-the-better process capability index))C(下标 L)常常被用來當作測量商品績效的標準,其中L是已知下規格界限。因此,這個研究利用來自Rayleigh分配的型Ⅱ多重設限樣本來建立一個C(下标 L)的均勻最小變異數不偏估計量(uniformly minimum variance unbiased estimator; UMVUE)。這個C(下标 L)的UMVUE被利用去發展一個具有已知L的新假設檢定。最後,我們給一個關於滾珠軸承的耐久力檢定的例子去說明在給定的顯著水準下此檢定程序如何進行商品的績效評估。而且透過此檢定程序,業者也可以了解所提供的商品壽命是否達到規格要求,並藉此檢定程序來提升商品品質,以更能符合顧客的需求。

英文摘要

In the service (or manufacturing) industries, process capability indices (PCIs) are utilized to assess whether product quality meets the required level. And the lifetime performance index (or larger-the-better process capability index) C(subscript L) is frequently used as a means of measuring product performance, where L is the lower specification limit. Hence, this study constructs an uniformly minimum variance unbiased estimator (UMVUE) of C(subscript L) based on the type Ⅱ multiply censored sample from the Rayleigh distribution. The UMVUE of CL is then utilized to develop a novel hypothesis testing procedure in the condition of known L. Finally, we give an example regarding the ball bearing in endurance test to illustrate the use of the testing procedure under given significance level. Moreover, the purchasers can then employ the testing procedure to determine whether the product performance adheres to the required level. Manufacturers can also utilize this testing procedure to improve the process capability.

主题分类 工程學 > 工程學總論
参考文献
  1. Caroni, C.(2002).The correct "ball bearings" data.Lifetime Data Analysis,8,395-399.
  2. Casella, G.,R. L. Berger(2002).Statistical Inference.Pacific Grove, CA:Duxbury Press.
  3. Chang, P. L.,K. H. Lu(1994).PCI calculations for any shape of distribution with percentile.Quality World, Technical Supplement,110-114.
  4. Chen, H. T.,L. I. Tong,K. S. Chen(2002).Assessing the lifetime performance of electronic components by confidence interval.Journal of the Chinese Institute of Industrial Engineers,19,53-60.
  5. Chen, Z.(1997).Statistical inference about the shape parameter of the Weibull distribution.Statistics and Probability Letters,36,85-90.
  6. Clements, J. A.(1989).Process capability calculations for non-normal distributions.Quality Progress,22,95-100.
  7. Dyer, D. D.,C. W. Whisenand(1973).Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part II: optimum theory for selected order statistics.IEEE Transactions on Reliability,22,229-231.
  8. Dyer, D. D.,C. W. Whisenand(1973).Best linear unbiased estimator of the parameter of the Rayleigh distribution-Part I: small sample theory for censored order statistics.IEEE Transactions on Reliability,22,27-34.
  9. Gail, M. H.,J. L. Gastwirth(1978).A scale-free goodness-of-fit test for the Exponential distribution based on the Gini statistic.Journal of the Royal Statistical Society, Series B,40,350-357.
  10. Hogg, R. V.,J. W. McKean,A. T. Craig(2005).Introduction to Mathematical Statistics.NJ:Pearson Prentice Hall.
  11. Hong, C. W.,J. W. Wu,C. H. Cheng(2007).Computational procedure of performance assessment of lifetime index of businesses for the Pareto lifetime model with the right type II censored sample.Applied Mathematics and Computation,184,336-350.
  12. Hong, C. W.,J. W. Wu,C. H. Cheng(2008).Computational procedure of performance assessment of lifetime index of Pareto lifetime businesses based on confidence interval.Applied Soft Computing,8,698-705.
  13. Johnson, N. L.,S. Kotz,N. Balakrishnan(1994).Continuous Univariate Distributions.New York:John Wiley & Sons.
  14. Kane, V. E.(1986).Process capability indices.Journal of Quality Technology,18,41-52.
  15. Lawless, J. E.(2003).Statistical Models and Methods for Lifetime Data.New York:John Wiley & Sons.
  16. Lehmann, E. L.,H. Scheff΄e(1950).Completeness, similar regions and unbiased estimates.Sankhya,10,305-340.
  17. Montgomery, D. C.(1985).Introduction to Statistical Quality Control.New York:John Wiley & Sons.
  18. Pearn, W. L.,K. S. Chen(1997).Capability indices for non-normal distributions with an application in electrolytic capacitor manufacturing.Microelectronics Reliability,37,1853-1858.
  19. Pearn, W. L.,S. Kotz(1994).Application of Clements` method for calculating second and third generation process capability indices for non-normal Pearsonian populations.Quality Engineering,7,139-145.
  20. Polovko, A. M.(1968).Fundamentals of Reliability Theory.New York:Academic Press.
  21. Raqab, M. Z.,M. T. Madi(2002).Bayesian prediction of the total time on test using doubly censored Rayleigh data.Journal of Statistical Computation and Simulation,72,781-789.
  22. Rayleigh, J. W. S.(1880).On the resultant of a large number of vibrations of the same pitch and of arbitrary phase.Philosophical Magazine,10,73-78.
  23. Rayleigh, J. W. S.(1919).On the problem of random vibrations, and of random flights in one, two and three dimensions.Philosophical Magazine,37,321-347.
  24. Tong, L. I.,K. S. Chen,H. T. Chen(2002).Statistical testing for assessing the performance of lifetime index of electronic components with exponential distribution.International Journal of Quality & Reliability Management,19,812-824.
  25. Wu, J. W.,H. M. Lee,C. L. Lei(2007).Computational testing algorithmic procedure of assessment for lifetime performance index of products with two-parameter exponential distribution.Applied Mathematics and Computation,190,116-125.