题名

An Inventory Model of Perishable Item with Two Types of Retailers

并列篇名

一種有兩類零售商的易變質品庫存模型

DOI

10.29977/JCIIE.200905.0003

作者

李軍(Jun Li);毛炯煒(Jiong-Wei Mao)

关键词

易變質品 ; 庫存 ; 庫存依賴需求 ; 補貨 ; perishable products ; inventory ; stock-dependent demand ; replenishment

期刊名称

工業工程學刊

卷期/出版年月

26卷3期(2009 / 05 / 01)

页次

176 - 183

内容语文

英文

中文摘要

蔬菜、水果、肉製品及海鮮等這類易變質品與我們的日常生活息息相關。在存儲過程中易變質品會隨著貯存時間發生腐爛、性能衰退和分解,從而降低產品的新鮮度或者數量。本文從批發商的角度討論了擁有兩類分別是常數需求和庫存依賴需求的零售商的易變質品庫存模型。假設了兩類零售商有不同的缺貨成本和常數變質率,分析了總成本的構成,以總收益最大化爲目標,建立了該問題的優化模型,分析了總收益函數的性質,討論了如何確定最優訂貨週期,計算實例驗證了該方法的有效性,並給出了缺貨成本與訂貨週期的關係。

英文摘要

Perishable products widely occur in daily production and life, such as vegetables, fruits, meats, seafood, whose freshness level are decreasing and inventory are losing by deterioration (damage, spoilage, dryness, vaporization, etc) as time elapsing. In this paper, an inventory model with two retailers is discussed, whose demands for perishable products are respectively constant and stock-dependent. Two retailers sell the same perishable product ordered from the single wholesaler. In the model, constant deteriorating rate is considered, shortages are allowed without backlogging, and the total profit is analyzed. Shortage cost rates and selling price are different. The necessary conditions of the existence and uniqueness of the optimal solution are shown. An optimal solution procedure to find the optimal replenishment policy is presented, and concavity conditions are discussed.

主题分类 工程學 > 工程學總論
参考文献
  1. Baker, R. C.,T. L. Urban(1988).A deterministic inventory system with an inventory level-dependent demand rate.Journal of the Operational Research Society,39,823-831.
  2. Ghare, P. M.,G. F. Schrader(1963).A model for exponentially decaying inventories.Journal of Industrial Engineering,14,238-243.
  3. Goyal, S. K.,B. C. Giri(2001).Recent trends in modeling of deterioration inventory.European Journal of Operational Research,134,1-16.
  4. Gupta, R.,P. Vrat(1986).Inventory model with multi-items under constraint systems for stock dependent consumption rate.Operations Research,24,41-42.
  5. Hou, K. L.(2006).An inventory model for deteriorating items with stock-dependent consumption rate and shortages under inflation and time discounting.European Journal of Operational Research,168,463-474.
  6. Ishii, H.(1993).Perishable inventory problem with two types of customers and different selling prices.Journal of Operation Research Society of Japan,36,199-205.
  7. Ishii, H.,T. Nose(1996).Perishable inventory control with two types of customers and different selling prices under the warehouse capacity constraint.International Journal of Production Economics,44,167-176.
  8. Jang, W.(2006).Production and allocation policies in a two-class inventory system with time and quantity dependent waiting costs.Computers & Operations Research,33,2301-2321.
  9. Jolai, F.,R. Tavakkoli-Moghaddam,M. Rabbani,M. R. Sadoughian(2006).An economic production lot size model with deteriorating items, stock-dependent demand, inflation, and partial backlogging.Applied Mathematics and Computation,181,380-389.
  10. Katagiri, H.,H. Ishii(2002).Fuzzy inventory problems for perishable commodities.European Journal of Operational Research,138,545-553.
  11. Maity, A. K.,K. Maity,S. Mondal,M. Maiti(2007).A Chebyshev approximation for solving the optimal production inventory problem of deteriorating multi-item.Mathematical and Computer Modelling,45,149-161.
  12. Mandal, B. N.,S. Phaujdar(1989).An inventory model for deteriorating items and stock-dependent consumption rate.Journal of the Operational Research Society,40,483-488.
  13. Manna, S. K.,K. S. Chaudhuri(2006).An EOQ model with ramp type demand rate, time dependent deterioration rate, unit production cost and shortages.European Journal of Operational Research,171,557-566.
  14. Nahmias, S.(1982).Perishable inventory theory: a review.Operations Research,30,680-708.
  15. Nahmias, S.,W. S. Demmy(1981).Operating characteristics of an inventory system with rationing.Management Science,27,1236-1245.
  16. Pal, A. K.,A. K. Bhunia,R. N. Mukherjee(2006).Optimal lot size model for deteriorating items with demand rate dependent on displayed stock level (DSL) and partial backordering.European Journal of Operational Research,175,977-991.
  17. Raafat, F.(1991).Survey of literature on continuously deteriorating inventory model.Journal of the Operational Research Society,42,27-37.
  18. Sapna Isotupa, K. P.(2006).An (s, Q) Markovian inventory system with lost sales and two demand classes.Mathematical and Computer Modelling,43,687-694.
  19. Song, X. P.,X. Q. Cai(2006).On optimal payment time for a retailer under permitted delay of payment by the wholesaler.International Journal of Production Economics,103,246-251.
  20. Urban, T. L.(2005).Inventory models with inventory-level-dependent demand: a comprehensive review and unifying theory.European Journal of Operational Research,162,792-804.
被引用次数
  1. (2013).A note on the inventory models with ramp type demand of negative exponentially distributed changing point.工業工程學刊,30(1),15-19.