题名

The Analysis of Customer Service Choices and Promotion Preferences Using Hierarchical Clustering

并列篇名

以層級分群法進行顧客服務選擇及客製化促銷之解析

DOI

10.29977/JCIIE.200909.0005

作者

張力元(Charles V. Trappey);張瑞芬(Amy J. C. Trappey);張艾喆(Ai-Che Chang);黃雅莉(Ashley Y. L. Huang)

关键词

顧客關係管理 ; 市場區隔 ; 顧客群集 ; 資料探勘 ; 顧客偏好 ; customer relationship management ; market segmentation ; customer clustering ; data mining ; consumer preferences

期刊名称

工業工程學刊

卷期/出版年月

26卷5期(2009 / 09 / 01)

页次

367 - 376

内容语文

英文

中文摘要

本研究以高級日式連鎖料理餐廳爲載具,深入研究顧客偏好,利用顧客選擇的餐點、人口統計變數屬性及歷史銷售資料,將價值顧客進行層級式分群。首先,依顧客到餐廳消費的日期、頻率及消費總金額做爲第一層級區隔之依據,發掘最具價值的客群。進一步再利用K-means分群法,依據顧客點選套餐之偏好屬性,進行細步群集分析。依據顧客的偏好與購買行爲分析之結果,餐廳可據以提供各群集顧客更精確且更精緻之客製化服務與促銷優惠方案,據以有效刺激消費者再次購買之意願。綜言之,本研究提出一服務產業顧客關係管理與客製化服務與促銷之科學性方法,以高級餐飲服務業爲案例,尤其對連鎖餐飲業者在變化萬端市場上的競爭優勢,具有實質之助益。又本論文之方法論亦可拓展至其它零售或服務產業之顧客層級分群及其客製化服務規劃之應用上。

英文摘要

Many factors influence customers' menu preferences and influence the promotional strategies used to improve a restaurant competitiveness and long term sustainability. This research uses preference variables to form distinctive clusters of consumers that are loyal to a gourmet Japanese style chain restaurant. Using customers' menu selections over time, demographic attributes, and historical sales data, the store manager hierarchically groups customers. For the first level of segmentation, customers are clustered based on frequency of visits and dining expenditures. Secondly, K-means clustering is used to analyze each sub-segment based on menu choice preferences. Given these results, the restaurant provides customized coupons and price discounts for each customer based on their previous preferences and behaviors. The study demonstrates an effective means to better manage and promote complex menu selections in a chain store or franchise restaurant environment.

主题分类 工程學 > 工程學總論
参考文献
  1. Bult, J. R.,T. J. Windbreak(1995).Optimal selection for direct mail.Marketing Science,14,378-394.
  2. Chen, I. J.,K. Popovich(2003).Understanding customer relationship management (CRM) people, process and technology.Business Process Management Journal,9,672-688.
  3. Freytag, P. V.,A. H. Clarkem(2001).Business to business market segmentation.Industrial Marketing Management,30,473-486.
  4. Goodman, J.(1992).Leveraging the customer database to your competitive advantage.Direct Marketing,55,26-27.
  5. Grönroos, C.(1988).Service quality: the six criteria of good perceived service.Review of Business,9,10-13.
  6. Hsu, F. C.,A. J. C. Trappey,C. V. Trappey,J. L. Hou,S. J. Liu(2006).Technology and knowledge document cluster analysis for enterprise R&D strategic planning.International Journal of Technology Management,36,336-353.
  7. Hughes, A. M.(1994).Strategic Database Marketing.Chicago:Probus Publishing.
  8. Imhoff, C.,L. Loftis,J. G. Geiger(2001).Building the Customer-centric Enterprise.NY:John Wiley & Sons.
  9. Irvin, S.(1994).Using lifetime value analysis for selecting new customers.Credit World,82,37-40.
  10. Lau, K. N.,K. H. Lee,P. Y. Lam,Y. Ho(2001).Web-site marketing for the travel-and-tourism industry.Cornell Hotel and Restaurant Administration Quarterly,42,55-63.
  11. Lau, K. N.,K. H. Lee,Y. Ho(2005).Text mining for the hotel industry.Cornell Hotel and Restaurant Administration Quarterly,46,344-362.
  12. Lee, J. H.,S. C. Park(2005).Intelligent profitable customers segmentation system based on business intelligence tools.Expert Systems with Applications,29,145-152.
  13. Liu, D. R.,Y. Y. Shih(2005).Integrating AHP and data mining for product recommendation based on customer lifetime value.Information & Management,42,387-400.
  14. MacQueen, J. B.(1967).Some methods for classification and analysis of multivariate observation.Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability,Berkeley, USA:
  15. Magnini, V. P.,E. D. Jr. Honeycutt(2005).Face recognition and name recall: training implications for the hospitality industry.Cornell Hotel and Restaurant Administration Quarterly,46,69-78.
  16. Magnini, V. P.,E. D. Jr. Honeycutt,S. K. Hodge(2003).Data mining for hotel firms: use and limitations.Cornell Hotel and Restaurant Administration Quarterly,44,94-104.
  17. McCarty, J. A.,M. Hastak(2007).Segmentation approaches in data-mining: a comparison of RFM, CHAID, and logistic regression.Journal of Business Research,60,656-662.
  18. Peppard, J.(2000).Customer relationship management (CRM) in financial services.European Management Journal,18,312-327.
  19. Punj, G.,D. W. Stewart(1983).Cluster analysis in marketing research: review and suggestions for application.Journal of Marketing Research,20,134-148.
  20. Reichheld, F. F.(1996).Learning from customer defections.Harvard Business Review,74,56-67.
  21. Ruiz, J. P.,J. C. Chebat,P. Hansen(2004).Another trip to the mall: a segmentation study of customers based on their activities.Journal of Retailing and Consumer Services,11,333-350.
  22. Runkler, T. A.,J. C. Bezdek(2003).Web mining with relational clustering.International Journal of Approximate Reasoning,32,217-236.
  23. Rygielski, C.,J. C. Wang,D. C. Yen(2002).Data mining techniques for customer relationship management.Technology in Society,24,483-502.
  24. Sampaio, P. R. F.,Y. He(2005).Business process design and implementation for customer segmentation e-services.Proceedings of the E-technology, E-commerce and E-service International Conference (EEE'05),Manchester:
  25. Sharma, S. C.(1996).Applied Multivariate Techniques.NY:John Wiley & Sons.
  26. Steenkamp, J. E. M.,F. T. Hofstede(2002).International market segmentation: issues and perspectives.International Journal of Research in Marketing,19,185-213.
  27. Stone, B.(1995).Successful Direct Marketing Methods.Lincolnwood:NTC Business Books.
  28. Storbacka, K.,J. N. Sheth(eds),A. Parvatiyar (eds)(2000).Handbook of Relationship Marketing.CA:Sage.
  29. Turban, E.,J. E. Aronson,T. P. Liang(2007).Decision Support and Business Intelligence System.NJ:Prentice-Hall.
被引用次数
  1. (2019).User preference enabled intelligent 3D product evolutionary design.工業工程學刊,36(7),475-492.