题名

A Comparative Analysis of Objective Weighting Methods with Intuitionistic Fuzzy Entropy Measures

并列篇名

以直覺模糊熵測度發展客觀權重法之比較性分析

DOI

10.29977/JCIIE.200911.0005

作者

陳亭羽(Ting-Yu Chen);李佳航(Chia-Hang Li)

关键词

直覺模糊熵 ; 決策 ; 客觀權重 ; 直覺模糊集合 ; 比較性分析 ; intuitionistic fuzzy entropy ; decision making ; objective weight ; intuitionistic fuzzy set ; comparative analysis

期刊名称

工業工程學刊

卷期/出版年月

26卷6期(2009 / 11 / 01)

页次

469 - 479

内容语文

英文

中文摘要

相較於傳統熵測度著重屬性的區辨程度,本研究利用直覺模糊熵測度具備可信度的特質發展一套新的客觀權重方法以解決多屬性決策問題。我們運用Vlachos與Sergiadis[18]以及Zeng與Li [25]所提出最新的直覺糢糊熵測度作爲本研究方法的基礎架構,而研究中的直覺糢糊熵測度均是以直覺模糊集合隸屬程度與非隸屬程度的觀點以計算得出直覺模糊熵值。經由模擬實驗的比較性分析,我們探討當不同屬性個數與方案個數的組合之下,使用相異的直覺模糊熵測度於客觀權重法所產生的結果。實驗數值顯示本研究所提出的客觀權重法執行不同的直覺模糊熵測度時會計算出相異的屬性權重值與排序,即使這些直覺模糊熵測度源自相同定理也會產生具有差異的權重,值得一提的是實驗所設定的屬性個數能夠影響直覺模糊熵測度之間的相似程度。本研究多屬性的客觀權重法不僅可計算客觀權重,更能結合決策者的主觀權重以獲得一個折衷的屬性權重值。

英文摘要

Instead of the traditional entropy measures which focus on the discrimination of attributes, we utilize the nature of intuitionistic fuzzy (IF) entropy measures which assess the weight of attributes based on the credibility of data to propose a new objective weighting method for solving the multiple attribute decision making (MADM) problems. In this proposed method, we executed various and the newest IF entropy measures introduced by Vlachos and Sergiadis [18], and Zeng and Li [25]. Both of them estimated the IF entropy from the viewpoint of membership and non-membership degree of intuitionistic fuzzy sets. A comparative analysis of experimental simulation which contains not only different combinations of given number of attributes and alternatives but also different IF entropy measures is designed to observe and discuss the outcomes. The experimental results indicated that different IF entropy measures applied in the weighting method would generate distinct weight values and the ranking of attributes even though the measures originated from the same theorem. Especially, the number of attributes decides the extent of similarity among IF entropy measures. With the new objective weighting method, the decision maker can combine it with his/her subjective weights to obtain a compromise attribute weights in MADM problems.

主题分类 工程學 > 工程學總論
参考文献
  1. Atanassov, K. T.(1986).Intuitionistic fuzzy sets.Fuzzy Sets and Systems,20,87-96.
  2. Atanassov, K. T.,G. Gargov(1989).Interval-valued intuitionistic fuzzy sets.Fuzzy Sets and Systems,31,343-349.
  3. Burillo, P.,H. Bustince(1996).Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets.Fuzzy Sets and Systems,78,305-316.
  4. Chen, S. J.,C. L. Hwang(1992).Fuzzy Multiple Attribute Decision Making Methods and Applications.NY:Springer-Verlag.
  5. Chen, S. M.,J. M. Tan(1994).Handling multicriteria fuzzy decision-making problems based on vague set theory.Fuzzy Sets and Systems,67,163-172.
  6. De Luca, A.,S. Termini(1972).A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory.Information Control,20,301-312.
  7. Hong, D. H.,C. H. Choi(2000).Multicriteria fuzzy decision-making problems based on vague set theory.Fuzzy Sets and Systems,114,103-113.
  8. Hung, W. L.,M. S. Yang(2006).Fuzzy entropy on intuitionistic fuzzy sets.International Journal of Intelligent Systems,21,443-451.
  9. Hwang, C. L.,K. Yoon(1981).Multiple Attribute Decision Making-methods and Applications: a State-of-the-art Survey.NY:Springer-Verlag.
  10. Li, D. F.(2005).Multiattribute decision making models and methods using intuitionistic fuzzy sets.Journal of Computer System Sciences,70,73-85.
  11. Lin, L.,X. H. Yuan,Z. Q. Xia(2007).Multicriteria fuzzy decision-making methods based on intuitionistic fuzzy sets.Journal of Computer and Systems Sciences,73,84-88.
  12. Liu, H. W.,G. J. Wang(2007).Multi-criteria decision making methods based on intuitionistic fuzzy sets.European Journal of Operational Research,179,220-233.
  13. Ma, J.,Z. P. Fan,L. H. Huang(1999).A subjective and objective integrated approach to determine attribute weights.European Journal of Operational Research,112,397-404.
  14. Saaty, T. L.(1980).The Analytic Hierarchy Process.NY:Mcgraw-Hill.
  15. Sambuc, R.(1975).French,University of Marseille, France.
  16. Szmidt, E.,J. Kacprzyk(2001).Entropy for intuitionistic fuzzy sets.Fuzzy Sets and Systems,118,467-477.
  17. Vlachos, I. K.,G. D. Sergiadis(2007).Intuitionistic fuzzy information-applications to pattern recognition.Pattern Recognition Letters,28,197-206.
  18. Vlachos, I. K.,G. D. Sergiadis(2007).Subsethood, entropy, and cardinality for interval-valued fuzzy sets an algebraic derivation.Fuzzy Sets and Systems,158,1384-1396.
  19. Wang, J. Q.(2006).A multi-criteria interval intuitionistic fuzzy decision-making approach with incomplete certain information.Control and Decision,21,1253-1256.
  20. Wang, J. Q.,Z. Zhang(2006).Compromise approach on multi-criteria intuitionistic fuzzy decision-making with incomplete certain information.Control and Decision,21,1-5.
  21. Xu, Z.(2007).Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making.Furry Optimization and Decision Making,6,109-121.
  22. Zadeh, L. A.(1965).Fuzzy sets.Information and Control,8,338-353.
  23. Zeleny, M.(1976).The attribute-dynamic attribute model.Management Science,23,12-26.
  24. Zeleny, M.(1982).Multiple Criteria Decision Making.NY:Graw-Hill.
  25. Zeng, W.,H. Li(2006).Relationship between similarity measure and entropy of interval valued fuzzy sets.Fuzzy Sets and Systems,157,1477-1484.