题名

Finite Buffer Single Vacation Queue with Accessible andNon-Accessible Batch Service

DOI

10.6186/IJIMS.2010.21.2.2

作者

P. Vijaya Laxmi;V. Goswami;O. M. Yesuf

关键词

Queue ; Markov Chain ; Single Vacation ; Supplementary Variable ; Accessible Batch ; Finite Buffer

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

21:2(2010 / 06 / 01)

页次

125 - 142

内容语文

英文

英文摘要

This paper analyzes a finite buffer single server accessible and non-accessible batch ser- vice queueing system in which the server takes exactly one exponential vacation each time the system level drops below a minimum threshold value. The inter-arrival and service times are, respectively, arbitrarily and exponentially distributed. The system(queue) length distri-butions at pre-arrival and arbitrary epochs and some performance measures are presented. Further, some special cases and numerical results have been shown in tables and graphs.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Chae, K. C.,Lee, S. M.,Lee S. H.(2008).The discrete-time GI/Geo/1 queue with single geometric vacation.Quality Technology & Quantitative Management,5,21-31.
  2. Chae, K. C.,Lee, S. M.,Lee, H. W(2006).On stochastic decomposition in the GI/M/1 queue with single exponential vacation.Operations Research Letters,34,706-712.
  3. Chae, K. C.,Lim, D. E.,Yang, W. S.(2009).The GI/M/1 queue and the GI/Geo/1 queue both with single working vacation.Performance Evaluation,66,356-367.
  4. Chatterjee, U.,Mukerjee, S. P.(1990).GI/M/1 queue with server vacations.Journal of the Operational Research Society,41,83-87.
  5. Chaudhry, M. L.,Templeton, J. G. C.(1983).A First Course in Bulk Queues.New York:Wiley.
  6. Chen, H. Y.,Li, J. H.,Tian, N. S.(2009).The GI/M/1 queue with phase-type working vacations and vacation interruption.Journal of Applied Mathematics and Computing,30,121-141.
  7. Doshi, B. T.(1986).Queueing systems with vacations-a survey.Queueing Systems,1,29-66.
  8. Goswami, V.,Mohanty, J. R.,Samanta, S. K.(2006).Discrete-time bulk-service queues with accessible and non-accessible batches.Applied Mathematics and Computation,182,898-906.
  9. Goswami, V.,Samanta S. K.(2009).Discrete-time single and batch service queues with accessibility to the batches.International Journal of Information and Management Sciences,20,27-38.
  10. Gross, D.,Shortle, J. F.,Thompson, J. M.,Harris, C. M.(2008).Fundamentals of Queueing Theory.New York:John Wiley & Sons, Inc..
  11. Gupta, U. C.,Sikdar, K.(2004).The finite-buffer M/G/1 queue with general bulk-service rule and single vacation.Performance Evaluation,57(2),199-219.
  12. Karaesmen, F.,Gupta, S. M.(1996).The finite capacity GI/M/1 with server vacations.Journal of the Operational Research Society,47,817-828.
  13. Ke, J. C.(2003).The analysis of a general input queue with N policy and exponential vactions.Queueing Systems,45,135-160.
  14. Kleinrock, L.(1975).Queueing Systems: Theory.New York:John Wiley & Sons.
  15. Latouche, G.,Ramaswami, V.(1999).Introduction to Matrix Analytic Methods in Stochastic Modelling.Philadelphia:Society for Industrial and Applied Mathematics.
  16. Medhi, J.(1984).Recent Development in Bulk Queueing Models.Wiley Eastern Limited.
  17. Medhi, J.(1991).Stochastic Models in Queueing Theory.San Diego, CA:Academic Press Professional, Inc..
  18. Mokaddis, G. S.,Metwally S. A.,Zaki B. M.(2009).On a batch arrival queue with priority and single vacation.International Journal of Information and Management Sciences,20,519-534.
  19. Neuts, M. F.(1967).A general class of bulk queues with Poisson input.Annals of Mathematical Statistics,38,759-770.
  20. Sivasamy, R.(1990).A bulk service queue with accessible and non-accessible batches.Opsearch: Journal of the Operational Research Society of India,27,46-54.
  21. Takagi, H.(1993).Queueing Analysis-A Foundation of Performance Evaluation, Finite Systems: Vol. 2.New York:North Holland.
  22. Takagi, H.(Ed.)(1990).Stochastic Analysis of Computer and Communi-cation Systems.Elsevier Science Publishers.
  23. Tian, N.,Zhang, D.,Cao, C.(1989).The GI/M/1 queue with exponential vacations.Queueing Systems,3,331-344.
  24. Tian, N.,Zhang, Z. G.(2006).Vacation Queueing Models: Theory and Applications.New York:Springer-Verlag.
  25. Vijaya Laxmi, P.,Gupta, U. C.(1999).On the finite-buffer bulk-service queue with general independent arrivals: GI/M[b]/1/N.Operations Research Letters,25,241-245.
  26. Zhao, G.,Du, X.,Tian, N.(2009).GI/M/1 queue with set-up period and working vacation and vacation interruption.International Journal of Information and Management Sciences,20,351-363.