题名

OWA Based PCA Information Fusion Method for Classification Problemm

DOI

10.6186/IJIMS.2010.21.2.7

作者

Jing-Wei Liu;Yen-Hsun Chen;Ching-Hsue Cheng;Sue-Fen Huang

关键词

PCA ; OWA Operator ; FCM ; Clustering ; Classification

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

21:2(2010 / 06 / 01)

页次

209 - 225

内容语文

英文

英文摘要

Information plays an important role in modern enterprises, no matter in decision sup- porting and business strategies making all provide efficient supports to executive managers. However, information is getting more and more today, how to handle high dimensions and high complexities data are more difficult than before. This contribution presents a informa-tion fusion method based on the concepts of Ordered Weighted Averaging (OWA) operator and Principal Components Analysis (PCA) method to deal with above problems. The pro-posed method can be described briefly as follows: (1) Reduce data dimensions by PCA method. (2) Calculate integrated values by order OWA operator. (3) Cluster data instances into specific group and train classification accuracies to obtain the best situation parame-ter α. (4) Validate classification accuracies from testing data. This contribution employs five datasets to verify the performances of proposed method and the results of the experi-ments show that the proposed method actually surpasses the listing methods in classification accuracies.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. ftp://ftp.ics.uci.edu/pub/machine-learning-databases, 2007.
  2. Aha, D.,Kibler, D.(1991).Instance-based learning algorithms.Machine Learning,6,37-66.
  3. Ahn, B. S.(2006).On the properties of OWA operator weights functions with constant level of orness.IEEE Transactions on Fuzzy Systems,14,511-515.
  4. Amini, L.,Soltanian-Zadeh, H.,Lucas, C.,Gity, M.(2004).Automatic segmentation of thalamus from brain mri integrating fuzzy clustering and dynamic contours.IEEE Transactions on Biomedical Engineering,12(5),800-811.
  5. Ballestero, E.(2009).Arbitration in business conflicts: A fuzzy decision model for arbitrated price agreements.International Journal of Information and Management Sciences,20(3),317-330.
  6. Bazdek, J.(1981).Pattern Recognition with Fuzzy Objective Function Algorithms.New York:Plenum.
  7. Biswas, R.(1995).An application of fuzzy sets in students' evaluation.Fuzzy Sets Systems,74,187-194.
  8. Broomhead, D. S.,Lowe D.(1988).Multivariate functional interpolation and adaptive networks.Complex Systems,2,321-355.
  9. Chen, S. M.,Lee, C. H.(1999).New methods for students' evaluation using fuzzy sets.Fuzzy Sets Systems,104,209-218.
  10. Cho, S. B.,Yoo, S. H.(2006).Fuzzy Bayesian validation for cluster analysis of yeast cell-cycle data.Journal of The Pattern Recognition Society,39,2405-2414.
  11. Fuller, R.,Majlender, P.(2001).An analytic approach for obtaining maximal entropy OWA operator weights'.Fuzzy Sets and Systems,124,53-57.
  12. George, H. J.,Pat, L.(1995).Estimating continuous distributions in Bayesian classifiers.Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence,San Mateo:
  13. Herrera, F.,Herrera-Viedma, E.,Verdegay, J. L.(1996).A Model of Consensus In group decision making under linguistic assessments.Fuzzy Sets System,78,73-87.
  14. Hotelling, H.(1993).Analysis of a Complex of Statistical Variables into Principal Components.Journal of Educational Psychology,24,498-520.
  15. Hung, W. L.,Yang, M. S.,Chen, D. H.(2006).Parameter selection for suppressed fuzzy C-means with an application to MRI segmentation.Pattern Recognition Letters,27,424-438.
  16. Khariul, A. R.,Shen, Q.(2006).Data-driven fuzzy rule generation and its application for student academic performance evaluation.Applied Intelligence,25,305-319.
  17. Law, C. K.(1996).Using fuzzy numbers in educational grading system.Fuzzy Sets Systems,83,311-323.
  18. Lu, H.-W.,Lu, Y.-H.,Yang, H.-M.(2009).Ordered categorical data in fuzzy ranking applied to service quality for western restaurants.International Journal of Information and Management Sciences,20(4),505-518.
  19. Marcelloni, F.(2003).Feature selection based on a modified fuzzy c-means algorithm with supervision.An International Journal of Information Sciences,151,201-226.
  20. Nauck, D.(2003).Measuring interpretability in rule-based classification systems.Proceeding of the International Conference on Fuzzy Systems,St. Louis, Missouri:
  21. Nauck, D.(1997).Neuro-fuzzy systems: reivew and prospects.Proceeding of the Fifth European Congress on Intelligent Techniques and Soft Computing,Aachen:
  22. Nauck, D.,Kruse, R.(1997).What are neuro-fuzzy classifiers?.Proceeding of the Seventh International Fuzzy Systems Association world Congress IFSA' 97,Prague:
  23. Newton, S. C.,Pemmaraju, S.,Mitra, S.(1992).Adaptive fuzzy leader clustering of complex data sets in pattern recognition.IEEE Transactions on Neural Networks,3(5),794-800.
  24. O''Hagan, M.(1987).Fuzzy decision aids.Proc 21st Asilomar Conference on Signal, Systems and Computers,Pacific Grove, CA:
  25. O''Hagan, M.(1988).Aggregating template rule antecedents in real-time expert systems with fuzzy set logic.Proc 22nd Annual IEEE Asilomar Conference on Signals, Systems and Computers,Pacific Grove, CA:
  26. Pearson, K.(1901).On lines and planes of closest fit to systems of points in spaces.Philosophical Magazine,6(2),559-572.
  27. Polat, K.,Gunes, S.(2007).Automatic determination of diseases related to lymph system from lym-phography data using principles components analysis (PCA), Fuzzy Weighting Pre-processing and ANFIS'.Expert Systems with Applications,33,636-641.
  28. Quinlan, J. R.(1993).C4.5: Programs for Machine Learning.San Mateo, CA:Morgan Kaufmann Publishers.
  29. Ross, T. J.(2004).Fuzzy Logical with Engineering Applications.John Wiley & Sons, Inc..
  30. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323,533-536.
  31. Sharma, S.(1996).Applied Multivariate Techniques.John Wiley & Sons, Inc..
  32. Shih, C.-C.(2009).Measuring qualities of query answers in fuzzy relational databases.International Journal of Information and Management Sciences,20(3),365-378.
  33. Tan, P. N.,Steinbach, M.,Kumar, V.(2006).Introduction to Data Mining.Pearson Education, Inc..
  34. Torra, V.(2004).OWA operators in data modeling and reidentification.IEEE Transactions on Fuzzy Systems,12(5),652-660.
  35. Wang, X.,Paliwal, K. K.(2003).Feature extraction and dimensionality reduction algorithms and their applications in vowel recognition.Pattern Recognition, Journal of The Pattern Recognition Society,36,2429-2439.
  36. Wang, Y. M.,Luo, Y.,Hua, Z. S.(2007).Aggregating preference rankings using OWA operator weights.An International Journal of Information Sciences,177,3356-3363.
  37. Yager, R. R.(1995).Fuzzy Aggregation of Modular Neural Networks with Ordered Weighted Averaging Operators.International Journal of Approximate Reasoning,13,359-375.
  38. Yager, R. R.(1988).On ordered weighted averaging aggregation operators in multicriteria decision making.IEEE Transactions System Man Cybernetics,18,183-190.
  39. Yager, R. R.(1991).On a semantics for neural networks based on fuzzy quantifiers.International Journal of Intelligence System,7,765-786.
  40. Yager, R. R.(1987).A Note on Weighted Queries in Information Retrieval Systems.Journal of America Society for Information Science,28,23-24.
  41. Yager, R. R.(1991).Connectives and quantifiers in fuzzy sets.Fuzzy Sets System,40,39-75.
  42. Yeh, D. Y.,Cheng, C. H.,Yio, H. W.(2007).Empirical research of the principal component analysis and ordered weighted averaging integrated evaluation model on software projects, cybernetics and systems.An international Journal,38,289-303.
  43. Yoav, Freund,Robert, E.(1996).Schapire: Experiments with a new boosting algorithm.Thirteenth International Conference on Machine Learning,San Francisco: