题名

Bayesian Estimation and Prediction on Inverse Rayleigh Distribution

DOI

10.6186/IJIMS.2011.22.4.2

作者

Sanku Dey;Tanujit Dey

关键词

Bayes estimator ; highest posterior density interval ; inverse Rayleigh distribution ; loss function ; posterior expected loss

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

22:4(2011 / 12 / 01)

页次

343 - 356

内容语文

英文

英文摘要

This article deals with Bayesian inference and prediction of the inverse Rayleigh distribution. We first obtain Bayes estimators of the inverse Rayleigh parameter and its posterior expected loss based on a conjugate prior. Then we derive the highest posterior density (HPD) and equal-tail credible intervals for the inverse Rayleigh parameter, as well as consider Bayes prediction for future observation based on the observed sample and provide the equal-tail and HPD prediction intervals. Monte Carlo simulations are performed to compare the performances of the Bayes estimates under different situations. A real data example is provided to assess how the inverse Rayleigh distribution fits a real data set. In analyzing the data, we propose a graphical technique to choose the parameter values of the conjugate prior.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Al-Hussaini, E. K.(1999).Predicting observables from a general class of distributions.Journal of Statistical Planning and Inference,79,79-91.
  2. Awad, A.M.,Gharraf, M.K.(1986).Estimation of P[Y < X] in the Burr case: A comparative study.Communications in Statistics- Simulation and Computation,15,189-203.
  3. Box, G.E.P.,Tiao, G.C.(1973).Bayesian Inference in Statistical Analysis.Boston, Massachusetts:Addison Wesley.
  4. Calabria, R.,Pulcini, G.(1996).Point estimation under asymmetric loss functions for left-truncated exponential samples.Communications in Statistics-Theory & Methods,25(3),585-600.
  5. Dey, D. K.,Ghosh, M.,Srinivasan, C.(1987).Simultaneous estimation of parameters under entropy loss.Journal of Statistical Planning and Inference,15,347-363.
  6. Dey, D. K.,Liu, P. L.(1992).On comparison of estimators in a generalized life model.Microelectronics Reliability,32,207-221.
  7. Edwards, W.,Lindman, H.,Savage, L. J.(1963).Bayesian statistical inference for psychological research.Psychological Review,70,193-242.
  8. Gharraf, M. K.(1993).Comparison of estimators of location measures of an inverse Rayleigh distribution.The Egyptian Statistical Journal,37(2),295-309.
  9. Howlader, H. A.,Hossain, A. A.,Makhnin, O.(2009).Bayesian prediction bounds for Rayleigh and Inverse Rayleigh life time models.Journal of Applied Statistical Science,17(1),131-142.
  10. Langlands, A. O.,Pocock, S. J.,Kerr, G. R.,Gore, S. M.(1979).Long term survival of patients with breast cancer: A study of curability of the disease.British Medical Journal,2,1247-1251.
  11. Lee, E.T.(1992).Statistical Methods for Survival Data Analysis.New York:John Wiley and Sons Inc..
  12. Lindley, D. V.(1969).Introduction to Probability and Statistics from a Bayesian view point.Cambridge:Cambridge University Press.
  13. Moorhead, P. R.,Wu, C. F. J.(1998).Cost-driven parameter design.Econometrics,40,111-119.
  14. Muhammad, M.(2007).Some distributional properties and estimation of parameters for inverse Rayleigh distribution through lower record values.International Journal of Statistics and Systems,2(1),15-19.
  15. Mukherjee, S. P.,Maiti, S. S.(1996).A Percentile Estimator of the Inverse Rayleigh Parameter.IAPQR Transactions,21(1),63-65.
  16. Norstrom, J. G.(1996).The use of Precautionary Loss Functions in Risk Analysis.IEEE Transactions on reliability,45(3),400-403.
  17. Raftery, A. E.,Newton, M. A.,Satgopan, J. M.,Krivitsky, P. N.(2007).Estimating the Integrated Likelihood via Posterior Simulation Using the Harmonic Mean Identity.Bayesian Statistics,8,1-45.
  18. Ren, C.,Sun, D.,Dey, D. K.(2010).Bayesian and frequentist estimation and prediction for exponential distributions.Journal of Statistical Planning and Inference,136,2873-2897.
  19. Soliman, A.,Essam, A.,Amin, A.,Abd-El Aziz, A.A.(2010).Estimation and Prediction from Inverse Rayleigh Distribution Based on Lower Record Values.Applied Mathematical Sciences,4(62),3057-3066.
  20. Treyer, V. N.(1964).A distribution law of random variables for the reliability computations for wearable parts of machines and devices, In: Doklady Acad. Nauk Belorus.SSR,8,47-50.
  21. Varian, H.R.(1975).A Bayesian Approach to Reliability Real Estate Assessment.Amsterdam:North Holland.
  22. Voda, V. Gh(1972).On the Inverse Rayleigh Distributed Random Variable.Reports in Statistical Applied Research,19,13-21.
  23. Zellner, A.(1986).Bayesian estimation and prediction using asymmetric loss function.Journal of American Statistical Association,81,446-451.