题名

On a Fluid Model Driven by an M/M/1 Queue with Catastrophe

DOI

10.6186/IJIMS.2012.23.2.6

作者

T. Vijayalakshmi;V. Thangaraj

关键词

Fluid queue ; M/M/1 queue ; catastrophe ; continued fractions ; Laplace transform

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

23:2(2012 / 06 / 01)

页次

217 - 228

内容语文

英文

英文摘要

In this paper, a fluid queue driven by an M/M/1 queue with catastrophe is discussed. The transient solution is expressed through continued fraction and deduced the steady state solution of our fluid queue. Further we deduce the results of the Fluid model driven by an M/M/1 queue without catastrophe.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Mao. B. W.,Wang, F. W.,Tian, N. S.(2010).Fluid Model Driven by an M/M/1/N Queue with Single Exponential Vacation.International Journal of Information and Management Sciences,21,29-40.
    連結:
  2. Adan, I. J. B. F.,Resing, J. A. C.(1996).Simple analysis of a fluid queue driven by an M/M/1 queue.Queueing Systems,22,171-174.
  3. Anderson, T.,Owicki, S.,Saxe, J.,Thacker, C.(1993).High Speed Switch scheduling for local area network.ACM Trans. on Computer Systems,11,319-352.
  4. Anick, D.,Mitra, D.,Sondhi, M. M.(1982).Stochastic theory of a data-handling system with multiple sources.Bell Syst. Tech. J.,61,1871-1894.
  5. Arivudainambi. D.,Krishna Kumar, B.(2000).Transient solution of an M/M/1 queue with catastrophes.Int. J. of Comp. Math.,40,1233-1240.
  6. Chao, X.(1995).A queueing network model with catastrophes and product form solution.O. R. Letters,18,75-79.
  7. Coffman, W. G.,Igelnik, B. M.,Kogman,Y. A.(1991).Controlled stochastic model of a communication system with multiple sources.IEEE Trans. Inform. Theory,37,1379-1387.
  8. Elvalid, A.,Mitra, D.(1993).Effective Bandwidth of General Markovian Sources and Admission Control of High-speed Networks,.IEEE/ACM Transactions on Networking,1,329-343.
  9. Gaver, D. P.,Lehoczky, J. P.(1982).Channels that cooperatively service a data stream and voice messages.IEEE Trans. Commun.,30,1153-1162.
  10. Jain, N. K.,Kumar, R.(2005).A catastrophic queuing model with correlated input for the cell traffic generated by new broadband services.Indian journal of Mathematics and Mathematical sciences,1,99-108.
  11. Lenin, R. B.,Parthasarathy, P. R.,Vijayashree, K. V.(2002).An M/M/1 driven fluid queuecontinued fraction.Queueing. Syst.,42,189-199.
  12. Low, S. H.,Varaiya, P. P.(1995).Burst reducing servers in ATM.Networks,20,61-84.
  13. Mitra, D.(1988).Stochastic theory of a fluid model of producers and consumers coupled by a buffer.Adv. in Appl. Prob.,20,646-676.
  14. Norros, I.,Virtoma, J.(1994).Fluid queue driven by an M/M/1 queue.Queueing Syst.,16,373-386.
  15. Parthasarathy, P. R.,Sericola. B.,Vijayashree, K. V.(2005).Exact transient solution for M/M/1 driven fluid queues.Int. J. Comput. Math.,82,659-671.
  16. Parthasarathy, P. R.,Vijayashree, K. V.(2003).Fluid queues driven by birth and death processes with quadratic rates.Int. J. of Comp. Math.,80,1685-1395.
  17. Sericola, B.(2001).A finite buffer fluid queue driven by a Markovian queue.Queueing syst.,38,213-220.
  18. Simonian, A.,Virtoma, J.(1991).Transient and stationary distributions for fluid queues and input processes with a density.SIAM. J. Appl. Math.,51,1732-1739.
  19. Van Doorn, E. A.,Scheinhardt, W. R. W.(1996).Analysis of birth-death fluid queues.Proceedings of Appl. Math. Workshop