题名

Time-stamping Predictive Strategy for Multi-echelon Inventory Control with Uncertain Lead Time

并列篇名

針對帶不確定提前期的多級庫存控制的時間戳預測策略

DOI

10.6186/IJIMS.2012.23.3.3

作者

利節(Jie Li);柴毅(Yi Chai);彭冕(Mian Peng)

关键词

多級庫存 ; 供應鏈 ; 時間戳預測策略 ; 不確定訂單延遲 ; 不確定生產延遲 ; Multi-echelon inventory ; supply chain ; time-stamping predictive strategy ; uncertain order delay ; uncertain production delay

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

23:3(2012 / 09 / 01)

页次

273 - 286

内容语文

英文

中文摘要

本文提出一個針對多級供應鏈模型中的庫存管理,將其定義為一個離散時變系統,和制定一種時間戳預測控制算法。通常,大多數的研究只考慮固定的生產時間,並且忽略訂單延遲。但是,提前期是導致長鞭效應的最主要因素。因此,在構建供應鏈模型時,需考慮不確定訂單延遲和不確定生產延遲;並且為獲得穩定庫存,在每次優化迭代中,更新係數矩陣以克服不確定提前期和隨機客戶需求帶來的庫存波動。與模型預測控制和最大庫存策略相比,仿真結果驗證了該算法在庫存控制上的魯棒性和長鞭效應上的有效性。

英文摘要

This paper proposed a time-stamping predictive control for inventory management where multi-echelon supply chain model is formulated as a discrete time-varying system. Generally, fixed production time is considered in most researches and order transmittal time is ignored. But lead time is one of most significant factors to induce bullwhip effect. Thus uncertain order delay and uncertain production delay are both taken into account while constructing supply chain model. For steady inventory, coefficient matrixes are renovated in the optimal iterations to overcome the storage perturbation under unsure lead time and stochastic customer demands. Simulations are compared with standard model predictive control and order-up-to strategy and computational results show the robustness on inventory control and validity on bullwhip effect.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Aharon, B. T.,Boaz, G.,Shimrit, S.(2009).Robust multi-echelon multi-period inventory control.European Journal of Operational Research,199(3),922-935.
  2. Axsäter, S.(2007).On the first come-first served rule in multi-echelon inventory control.Naval Research Logistics (NRL),54(5),485-491.
  3. Bensoussan, A.,Liu, R. H.,Sethi, S.(2006).Optimality of an (s, S) policy with compound Poisson and diffusion demands: a quasi variational inequalities approach.SIAM Journal on Control & Optimization,44(5),1650-1676.
  4. Braun, M. W.,Rivera, D. E.,Carlyle, W. M.,Kempf, K. G.(2003).Application of model predictive control to robust management of multiechelon demand networks in semiconductor manufacturing.SIMULATION,79(3),139-156.
  5. Caggiano, K. E.,Jackson, P. L.,Muckstadt, J. A.,Rappold, J. A.(2009).Efficient computation of time-based customer service levels in a multi-item, multi-echelon supply chain: A practical approach for inventory optimization.European Journal of Operational Research,199(3),744-749.
  6. David, S. L.,Zhao, Y.(2007).Three generic methods for evaluating stochastic multi-echelon inventory systems.
  7. Gallo, M.,Guerra, L.,Naviglio, G.(2010).Multi-echelon inventory performance evaluation: the case of a communications company.Business Performance Measurement and Management,7,293-310.
  8. Guan, R.,Zhao, X.(2010).On contracts for VMI program with continuous review (r, Q) policy.European Journal of Operational Research,207(2),656-667.
  9. Gumus, A. T.,Guneri, A. F.(2009).A multi-echelon inventory management framework for stochastic and fuzzy supply chains.Expert Systems with Applications,36(3),5565-5575.
  10. Gumus, A. T.,Guneri, A. F.,Ulengin, F.(2010).A new methodology for multi-echelon inventory management in stochastic and neuro-fuzzy environments.International Journal of Production Economics,128(1),248-260.
  11. Hall, G.,Rust, J.(2007).The (s , S) policy is an optimal trading strategy in a class of commodity price speculation problems.Economic Theory,30(3),515-538.
  12. Ho, C. H.(2009).A minimax distribution free procedure for an integrated inventory model with defective goods and stochastic lead time demand.International Journal of Information and Management Sciences,20,161-171.
  13. Huang, D.,Sarjoughian, H.,Wang, W.,Godding, G. W.,Rivera, D. E.,Kempf, K. G.,Mittelmann, H. D.(2009).Simulation of semiconductor manufacturing supply-chain systems with DEVS, MPC, and KIB.IEEE Transactions on Semiconductor Manufacturing,22(1),164-174.
  14. Huh, W. T.,Janakiraman, G.,Muckstadt, J. A.,Rusmevichientong, P.(2009).An adaptive algorithm for finding the optimal base-stock policy in lost sales inventory systems with censored demand.Mathematics of Operations Research,34(2),397-416.
  15. Huh, W. T.,Janakiraman, G.,Muckstadt, J. A.,Rusmevichientong, P.(2009).Asymptotic optimality of order-up-to policies in lost sales inventory systems.Management Science,55(3),404-420.
  16. Katircioglu, K.,Gallego, G.(2011).A practical multi-echelon inventory model with semiconductor manufacturing application.International Series in Operations Research & Management Science,152,133-151.
  17. Lee, H. L.,Padmanabhan, V.,Whang, S.(1997).Information distortion in a supply chain: the bullwhip effect.Management Science,43(4),546-558.
  18. Maiti, M. K.,Maiti, M.(2009).Utilization of multu-objective genetic algorithm for one-item multi-level inventory distribution system.International Journal of Information and Management Sciences,20,291-304.
  19. Mestan, E.,Türkay, M.,Arkun, Y.(2006).Optimization of operations in supply chain systems using hybrid systems approach and model predictive control.Industrial and Engineering Chemistry Research,45,6493-6503.
  20. Mitra, S.,Chatterjee, A. K.(2004).Echelon stock based continuous review (r, Q) policy for fast moving items.Omega,32(2),161-166.
  21. Moinzadeh, K.(2002).A multi-Echelon inventory system with information exchange.Management Science,48(3),414-426.
  22. Niu, J.,Xu, Z. H.,Zhao, J.,Shao, Z. J.,Qian, J. X.(2010).Model predictive control with an on-line identification model of a supply chain unit.J Zhejiang Univ-Sci C(Comput and Electron),11,394-400.
  23. Sarimveis, H.,Patrinos,P.,Tarantilis, C. D.,Kiranoudis, C. T.(2008).Dynamic modeling and control of supply chain systems: a review.Computers & Operations Research,35(11),3530-3561.
  24. Sarjoughian, H. S.,Huang, D.,Godding, G. W.,Wang, W.,Rivera, D. E.,Kempf, K. G.,Mittelmann, H. D.(2005).Hybrid discrete event simulation with model predictive control for semiconductor supply-chain manufacturing.Simulation Conference, Proceedings of the Winter
  25. Seferlis, P.,Giannelos, N. F.(2004).A two-layered optimisation-based control strategy for multi-echelon supply chain networks.Computers & Chemical Engineering,28(5),799-809.
  26. Srinivasagupta, D.,Schättler, H.,Joseph, B.(2004).Time-stamped model predictive control: an algorithm for control of processes with random delays.Computers and Chemical Engineering,28,1337-1346.
  27. Tsiakis, P.,Shah, N.,Pantelides, C. C.(2001).Design of multi-echelon supply chain networks under demand uncertainty.Industrial & Engineering Chemistry Research,40(16),3585-3604.
  28. You, F.,Grossmann, I. E.(2009).MINLP model and algorithms for optimal design of large-scale supply chain with multi-echelon inventory and risk pooling under demand uncertainty.Computer Aided Chemical Engineering, 10th International Symposium on Process Systems Engineering: Part A