题名

A Single Server Compulsory Vacation Queue with Two Type of Services and with Restricted Admissibility

并列篇名

俱兩種服務類型及隨機限制受理之單一強制休假排隊

DOI

10.6186/IJIMS.2012.23.3.4

作者

R. Kalyanaraman;V. Suvitha

关键词

強制服務休假 ; 白努力過程 ; 限制受理 ; 輔助變數法 ; 績效衡量 ; Compulsory server vacation ; Bernoulli process ; restricted admissibility ; supplementary variable technique ; performance measures

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

23:3(2012 / 09 / 01)

页次

287 - 304

内容语文

英文

中文摘要

吾人考慮強制休假之單一排隊,其中顧客以白努力機率容許排隊,而服務分有兩種類型。本文中應用輔助變數法導出在不同狀態下之顧客數機率生成函數。計算了一些績效衡量,給了一些例題,並且也導出一些特殊情況下的結果。

英文摘要

A single server queue with compulsory vacation has been considered. In addition admission to queue is based on a Bernoulli process and the server gives two types of services. For this model the probability generating functions of number of customers in the queue for different server states are obtained using supplementary variable technique. Some performance measures are calculated. Particular cases are deduced and some numerical examples are presented.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Anabosi, R. F.,Madan, K. C.(2003).A single server queue with two types of service, Bernoulli schedule server vacations and a single vacation policy.Pakistan Journal of Statistics,19,331-342.
  2. Cooper, R. B.(1970).Queues served in cyclic order: waiting times.The Bell System Technical Journal,49,399-413.
  3. Cooper, R. B.(1981).Introduction to Queueing Theory.New York:Elsevier, North Holland.
  4. Doshi, B. T.,Takagi, H.(Ed.)(1990).Stochastic analysis of computer and cornmunication systems.Amsterdam:Elsevier.
  5. Keilson, J.,Servi, L.(1986).Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules.Journal of Applied Probability,23,790-802.
  6. Levy, Y.,Sidi, M.,Boxma, O. J.(1990).Dominance relations in polling systems.Queueing systems,6,155-172.
  7. Levy, Y.,Yechiali, U.(1975).Utilisation of idle time in an M/G/1 queueing system.Management Science,22,202-211.
  8. Madan, K. C.(1992).An M/G/1 queueing system with compulsory server vacations.TRABAJOS DE INVESTIGACION OPERATIVA,7,105-115.
  9. Madan, K. C.,Abu-Dayyeh, W.(2002).Restricted admissibility of batches into an M/G/1 type bulk queue with modified Bernoulli Schedule Server vacation.ESAIM: Probability and Statistics,6,113-125.
  10. Madan, K. C.,Choudhury, G.(2005).A single server queue with two phases of heterogeneous service under Bernoulli schedule and a general vacation time.International Journal of Information and Management Sciences,16,1-16.
  11. Miller, L. W.(1964).Ithaca, N. Y.,Cornell University.
  12. Neuts, M. F.(1984).Technical ReportTechnical Report,University of Delaware.
  13. Rue, R. C.,Rosenshine, M.(1981).Some properties of optimal control policies for entries to an M/M/1 queue.Naval Research Logistics Quartely,28,525-532.
  14. Stidham, S., Jr(1985).Optimal control of admission to the queueing system.IEEE Transactions on Automatic Control,AC-30,705-713.
  15. Takagi, H.(1991).Queueing Analysis, Vol.1: Vacation and Priority Systems.North Holland, Amsterdam:
  16. Tian, N.,Zhang, Z. G.(2006).Vacation Queueing Models: Theory and Applications.Springers.
  17. Zadeh, A. B.(2009).An Mx/(G1 , G2)/1/G(BS)/Vs with second service and admissibility restricted.International Journal of Information and Management Sciences,20,305-316.
  18. Zhang, H. B.,Shi, D. H.(2009).The M/M/1 queue Bernoulli-schedule-controlled vacation and vacation interruption.International Journal of Information and Management Sciences,20,579-587.