题名

M/G/1 Feedback Queue with Two Stage Heterogeneous Service with Time Homogeneous Breakdowns and Deterministic Repair Times

并列篇名

M/G/1反饋排隊俱兩階段不同服務且具相同故障率及固定維修時間

DOI

10.6186/IJIMS.2012.23.3.5

作者

S. Vanitha

关键词

波松抵達 ; 閒置狀態 ; 穩定狀態 ; 固定維修 ; 輔助變數法 ; Poisson arrivals ; idle state ; steady state ; deterministic repairs ; supplementary variable technique

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

23:3(2012 / 09 / 01)

页次

305 - 322

内容语文

英文

中文摘要

吾人探討反饋單一排隊,波松抵達,兩階段不同隨機服務時間,隨機故障。故障時,其維修時間為定常。第一階段服務後,服務必須繼續第二階段服務。若第二階段服務不滿意,顧客可能逕至隊尾,其機率為p,否則,永遠離開系統(機率為q = 1-p)。本文應用輔助變數法導得系統中人數之機率生成函數之公式以及系統中之平均人數。此外也討論了一些特具意義的特殊情況。

英文摘要

We analyze a single server feedback queue with Poisson arrivals, two stages of heterogeneous service with different (arbitrary) service time distributions subject to random breakdowns and just after a breakdown the server undergoes repairs of a fixed (constant) duration. After first-stage service, the server must provide the second stage service. However after the completion of second stage of service, if the customer is dissatisfied with his service, he can immediately join the tail of the queue as a feedback customer with probability p: Otherwise the customer may depart forever from the system with probability q = 1-p. The supplementary variable technique is employed to find explicitly the probability generating function of the number in the system and the mean number in the system. Some particular cases of interest are discussed as special cases.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Choudhury, G.(2005).An M/G/1 queueing system with two phase service under D policy.International Journal of Information and Management Sciences,16,1-17.
  2. Choudhury, G.,Paul, M.(2006).On a single server queue with two stage heterogeneous service and deterministic server vacations.International Journal of System Science,32,837-844.
  3. Cox, D. R.(1955).The analysis of non-Markovian stochastic processes by the inclusion of supplementary variables.Proceedings of Cambridge Philosophical Society
  4. Cramer, M.(1989).Stationary distributions in a queueing system with vacation time and limited service.Queueing systems,4,57-68.
  5. Doshi, B. T.(1985).A note on stochastic decomposition in a GI/G/1 queue with vacation or setup times.Journal of Applied Probability,22,419-428.
  6. Doshi, B. T.(1986).Queueing systems with vacations- A survey.Queueing systems,1,29-66.
  7. Fuhrman, S.(1981).A note on the M/G/1 queue with server vacations.Operations Research,31,13-68.
  8. Gaver, D. P.(1959).Imbedded Markov chain analysis of a waiting line process in continuous time.Annals of Mathematical Statistics,30,698-720.
  9. Kashyap, B. R. K.,Chaudhry, M. L.(1988).An introduction to Queueing theory.Ontario:Kingston.
  10. Keilson, J.,Servi, N. D.(1986).Oscillating random walk models for GI/G/1 vacation systems with Bernoulli schedules.Journal of Applied Probability,23,790-802.
  11. Levy, Y.,Yechiali, U.(1976).An M/M/s queue with server vacations.Canadian Journal of Operational Research and Information Processing,14,153-163.
  12. Madan, K. C.(1999).An M/G/1 queue with optional deterministic server vacations.Metron LVII.
  13. Madan, K. C.(2001).On a single server queue with two stage heterogeneous service and deterministic server vacations.International Journal of System Science,32,837-844.
  14. Madan, K. C.,Choudhury, G.(2006).Steady state analysis of an Mx/(G1, G2)/1 queue with restricted admissibility and random setup time.International Journal of Information and Management Sciences,17,33-56.
  15. Madan, K. C.,Choudhury, G.(2005).A single server queue with two phases of heterogeneous service under Bernoulli schedule and a general vacation time.International Journal of Information and Management Sciences,16,1-16.
  16. Madan, K. C.,Choudhury, G.(2004).An Mx/G/1 queue with Bernoulli vacation schedule under Restricted Admissibility policy.Sankhya,66,175-193.
  17. Madan, K. C.,Saleh, M. F.(2001).On M/D/1 queue with server vacations.International Journal of Information and System Science,12,25-37.
  18. Maraghi, F. A.,Madan, K. C.,Dowman, K. D.(2009).Batch arrival queueing system with random breakdowns and Bernoulli schedule server vacations having general time distribution.International Journal of Information and Management Sciences,20,55-70.
  19. Shantikumar, J. G.(1988).On stochastic decomposition in the M/G/1 type queues with generalised vacations.Operations Research,36,566-569.
  20. Takagi, H.(1991).Queueing Analysis: Vacation and Priority Systems.North Holland, Amsterdam:
  21. Takine, T.,Sengupta, B.(1997).A single server queue with service interruptions.Queueing systems,26,285-300.
  22. Tegham, J.(1986).Control of the service process in a queueing system.European Journal of Operational Research,23,141-158.
  23. Thangaraj, V.,Vanitha, S.(2009).A two phase M/G/1 feedback queue with multiple server vacations.International Journal of Stochastic Analysis and Applications,27,1231-1245.
  24. Thangaraj, V.,Vanitha, S.(2009).On the analysis of M/G/1 feedback queue with two stage heterogeneous service and with multiple server vacations.International Mathematical Forum,22(5),829-847.
  25. Zadeh, A. B.,Shankar, G. H.(2008).A two phase system with Bernoulli feedback and Bernoulli schedule server vacation.International Journal of Information and Management Sciences,19,329-338.