题名

Extended Fuzzy Regression Model with Least Squares Estimation and Residual Evaluation

DOI

10.6186/IJIMS.2012.23.4.1

作者

Neng-Fang Tseng

关键词

Extended fuzzy regression model (EFR model) ; fuzzy coefficient ; least squares method ; fuzzy residuals ; mean squared error (MSE)

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

23:4(2012 / 12 / 01)

页次

341 - 357

内容语文

英文

英文摘要

In this paper we extend the basic configuration of the fuzzy regression model so that boundaries of the membership function are less restricted, as well as the procedure of estimation for the fuzzy coefficient is also proposed. In addition, the residuals in the extended fuzzy regression model are evaluated by fuzzy arithmetic. The mean squared error defined in terms of the fuzzy residuals is used as a criterion for model selection. Finally the empirical study shows that the model selection procedure using MSE can provide an objective decision in the analysis of Taiwan's Monitoring Indicator.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Andres, J. de.(2006).Calculating insurance claim reserves with fuzzy regression.Fuzzy Sets and Systems,157,3091-3108.
  2. Andres, J. de.,Terceno, A.(2004).Estimating a fuzzy term structure of interest rates using fuzzy regression techniques.European Journal of Operational Research,154,804-818.
  3. Asadzadeh, S. M.,Azadeh, A.,Ziaeifar, A.(2011).A neuro-fuzzy-regression algorithm for improved prediction of manufacturing lead time with machine breakdowns.Concurrent Engineering,19,269-281.
  4. Azadeh, A.,Saberi, M.,Ghaderi, S. F.,Gitiforouz, A.(2010).Estimating and improving electricity demand function in residential sector with imprecise data by fuzzy regression.International Journal of Mathematics in Operational Research,2,405-423.
  5. Chen, L. Y.,Mujtaba, B. G.(2010).Strategic prediction of the business cycle using the fuzzy regression model: a study of the council of economic planning and development in Taiwan.International Journal of Business Forecasting and Marketing Intelligence,1,217-23.
  6. Diamond, P.(1988).Fuzzy least squares.Information Sciences,46,141-157.
  7. D''Urso, P.,Santoro, A.(2006).Goodness of fit and variable selection in the fuzzy multiple linear regression.Fuzzy Sets and Systems,157,2627-2647.
  8. Hong, D. H.,Hwang, C.(2004).Extended fuzzy regression models using regularization method.Information Sciences,164,31-46.
  9. Körner, R.,Näther, W.(1998).Linear regression with random fuzzy variables: extended classical estimates, best linear estimates, least squares estimates.Information Sciences,109,95-118.
  10. Mousavia, S. J.,Ponnambalamb, K.,Karrayb, F.(2007).Inferring operating rules for reservoir operations using fuzzy regression and ANFIS.Fuzzy Sets and Systems,158,1064-1082.
  11. Nasrabadi, E.,Hashemi, S. M.(2008).Robust fuzzy regression analysis using neural networks.International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,16,579-598.
  12. Pasha, E.(2007).Fuzzy Linear Regression Models with Fuzzy Entropy.Applied Mathematical Sciences,1,1715-1724.
  13. Ramli, A. A.,Watada, J.,Pedrycz, W.(2011).Real-time fuzzy regression analysis: A convex hull approach.European Journal of Operational Research,210,606-617.
  14. Sakawa, M.,Yano, H.(1992).Multi-objective fuzzy linear regression analysis for fuzzy input-output data.Fuzzy Sets and Systems,47,173-181.
  15. Sener, Z.,Karsak, E. E.(2010).A fuzzy regression and optimization approach for setting target levels in software quality function deployment.Software Quality Journal,18,323-339.
  16. Sung, B. S.,Kim, I. S.,Xue, Y.,Kim, H. H.,Cha, Y. H.(2007).Fuzzy regression model to predict the bead geometry in the robotic welding process.Acta Metallurgica Sinica,20,391-397.
  17. Tanaka, H.,Uejima, S.,Asai, K.(1982).Linear regression analysis with fuzzy model.IEEE Trans. Systems Man Cybernet,12,903-907.
  18. Wang, H. F.,Tsaur, R. C.(2000).Bicriteria variable selection in a fuzzy regression equation.Computers & Mathematics with Applications,40,877-883.
  19. Wu, B.,Tseng, N. F.(2002).A new approach to fuzzy regression models with application to business cycle analysis.Fuzzy Sets and Systems,130,33-42.
  20. Xu, R.,Li, C.(2001).Multidimensional least-squares fitting with a fuzzy model.Fuzzy Sets and Systems,119,215-223.
  21. Yang, M. S.,Ko, C. H.(1997).On cluster-wise fuzzy regression analysis.IEEE Trans. on Systems, Man, and Cybernetics-Part B,27,1-13.