题名

Grey Interval Time Series Forecast

DOI

10.6186/IJIMS.2013.24.4.1

作者

Ying-Yuan Chen;Hao-Tien Liu

关键词

Grey set ; interval-value data ; small data size ; time series forecast

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

24卷4期(2013 / 12 / 01)

页次

279 - 295

内容语文

英文

英文摘要

Numerous grey forecast methods have been developed for small size time series data. These methods are aimed at forecasting single-value data. Grey methods that can forecast interval-value data are rare. Therefore, this study attempts to use the grey system theory to forecast interval-value data. This research is an innovative approach that combines grey interval numbers, traditional forecast methods and the GM(1, 1) model to develop four grey interval forecast methods. Specifically, the first three methods make use of interval grey number operations, and the last method expands the grey GM(1, 1) model. In order to compare the forecast accuracy of the four methods, this study designs two forecast error measurement indices: grey mean absolute deviation (GMAD) and grey mean absolute percent error (GMAPE); 36 sets of real-world interval data are employed to compare the forecast accuracy of the four methods. The forecast result shows the maximum and minimum of the average GMAPE for the four methods to be 1.791% and 0.622%, respectively. This result indicates that the proposed four methods provide high forecast accuracy.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Anandhi, V.,Chezian, R. M.(2013).Support Vector Regression to Forecast the Demand andSupply of Pulpwood.International Journal of Future Computer and Communication,2,266-269.
  2. Anandhi, V.,Chezian, R. M.(2013).Biased Gaussian Kernel Support Vector Machines -A Forecasting Method.Australian Journal of Basic and Applied Sciences,7,639-644.
  3. Arroyo, J.,Espínola, R.,Maté, C.(2011).Different approaches to forecast interval time series: A comparison in finance.Computation Economics,37,169-191.
  4. Arroyo, J.,Roque, A. M. S.,Maté, C.,Sarabia, A.(2007).Exponential smoothing methods for interval time series.Proceedings of the 1st European Symposium on Time Series Prediction
  5. Cai, Q.,Zhang, D.,Wu, B.,Leung, S. C. H.(2013).A novel stock forecasting model based on fuzzy time series and genetic algorithm.Procedia Computer Science,18,1155-1162.
  6. Cheng, C. H.,Cheng, G. W.,Wang, J. W.(2008).Multi-attribute fuzzy time series method based on fuzzy clustering.Expert Systems with Applications,34,1235-1242.
  7. Christodoulos, C.,Michalakelis, C.,Varoutas, D.(2010).Forecasting with limited data: combining ARIMA and diffusion models.Technological Forecasting & Social Change,77,558-565.
  8. Dang, Y.,Liu, S.,Liu, B.,Tang, X.(2006).Grey situation decision model of interval numbers.Scientific Inquiry,7,103-110.
  9. Deng, J. L.(1982).Control problems of grey system.Systems & Control Letters,1,288-294.
  10. Deng, J. L.(1989).Introduction to grey system theory.The Journal of Grey System,1,1-24.
  11. Gangwar, S. S.,Kumar, S.(2012).Partitions based computational method for high-order fuzzy time series forecasting.Expert Systems with Applications,39,12158-12164.
  12. García-Ascanio, C.,Maté, C.(2010).Electric power demand forecasting using interval time series: A comparison between VAR and iMLP.Energ Policy,38,715-725.
  13. Han, A.,Hong, Y.,Lai, K. K.,Wang, S.(2008).Interval time series analysis with an application to the Sterling-Dollar exchange rate.Journal of Systems Science and Complexity,21,558-573.
  14. Hsu, L. C.(2011).Using improved grey forecasting models to forecast the output of opto-electronics industry.Expert Systems with Applications,38,13879-13885.
  15. Hsu, L. C.,Wang, C. H.(2009).Forecasting integrated circuit output using multivariate grey model and grey relational analysis.Expert Systems with Applications,36,1403-1409.
  16. Hu, C.,He, L. T.(2007).An application of interval methods to stock market forecasting.Reliable Computing,13,423-434.
  17. Huang, C.,Moraga, C.(2004).A diffusion-neural-network for learning from small samples.International Journal of Approximate Reasoning,35,137-161.
  18. Huang, Y. F.,Zheng, M. C.,Wu, C. H.(2004).Comparison of various different approaches to tourist demand forecasting.Journal of Grey System,7,21-27.
  19. Hyndman, R. J.,Kostenko, A. V.(2007).Minimum sample size requirements for seasonal forecasting models.Foresight,6,12-15.
  20. Jaulin, L.,Kieffer, M.,Didrit, O.,Walter, E.(2001).Applied Interval Analysis.London:Springer-Verlag.
  21. Kung, C. Y.,Yan, T. M.,Chuang, S. C.(2006).GRA to assess the operating performance of non-life insurance companies in Taiwan.Journal of Grey System,18,155-160.
  22. Lee, S. C.,Shih, L.H.(2011).Forecasting of electricity costs based on an enhanced gray-based learning model: A case study of renewable energy in Taiwan.Technological Forecasting and Social Change,78,1242-1253.
  23. Lee, Y. S.,Tong, L. I.(2011).Forecasting energy consumption using a grey model improved by incorporating genetic programming.Energy Conversion and Management,52,147-152.
  24. Lee, Y. T.,Chiu, C. S.(2009).Skin Physiology Analysis via Grey GM(1, N) and GM(0, N) Model.International Journal of Bio-Science and Bio-Technology,1,25-36.
  25. Li, D. C.,Chang, C. J.,Chen, C. C.,Chen, W. C.(2012).Forecasting short-term electricity consumption using the adaptive grey-based approach-An Asian case.Omega,40,767-773.
  26. Li, G. D.,Masuda, S.,Yamaguchi, D.,Nagai, M.,Wang, C. H.(2010).An improved grey dynamic GM(2, 1) model.International Journal of Computer Mathematics,87,1617-1629.
  27. Lin, C. S.,Liou, F. M.,Huang, C. P.(2011).Grey forecasting model for CO2 emissions: A Taiwan study.Applied Energy,88,3816-3820.
  28. Liu, S.,Lin, Y.(2006).Grey Information - Theory and Practical Applications.London:Springer-Verlag.
  29. Liu, S.,Lin, Y.(2010).Grey Systems - Theory and Applications.London:Springer-Verlag.
  30. Maia, A. L. S.,de Carvalho, F. D. A. T.,Ludermir, T. B.(2008).Forecasting models for interval - valued time series.Neurocomputing,71,3344-3352.
  31. Mao, M.,Chirwa, E. C.(2006).Application of grey model GM(1, 1) to vehicle fatality risk estimation.Technological Forecasting and Social Change,73,588-605.
  32. Mao, Z. L.,Sun, J. H.(2011).Application of grey-Markov model in forecasting fire accidents.Procedia Engineering,11,314-318.
  33. Moore, R. E.,Kearfott, R. B.,Cloud, M. J.(2009).Introduction to interval analysis.Philadelphia:Society for Industrial and Applied Mathematics.
  34. Nassreddine, G.,Abdallah, F.,Denoeux, T.(2010).State estimation using interval analysis and belief-function theory: application to dynamic vehicle localization.IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,40,1205-1218.
  35. Niu, F.,Nie, S.,Wang, W.(2008).The forecasts performance of gray theory, BP network, SVM for stock index.International Symposium on Knowledge Acquisition and Modeling
  36. Pan, L.,Sun, B.,Wang, W.(2011).City air quality forecasting and impact factors analysis based on grey model.Procedia Engineering,12,74-79.
  37. Roque, A. M. S.,Maté, C.,Arroyo, J.,Sarabia, A.(2007).iMLP: Applying multi-layer perceptrons to interval-valued data.Neural Processing Letters,25,157-169.
  38. Shen, J. H.,Zhao, X. R.(2002).Construction of GM(2, 1) model for oscillating pitch angle series.Journal of Marine science and Application,1,65-68.
  39. Stanujkic, D.,Magdalinovic, N.,Jovanovic, R.,Stojanovic, S.(2012).An objective multi-criteria approach to optimization using MOORA method and interval grey numbers.Technological and Economic Development of Economy,18,331-363.
  40. Wang, J. F.,Liu, S. F.(2011).Efficiency measures in DEA with grey interval data under the hypotheses of data consistency.2011 IEEE International Conference on Grey Systems and Intelligent Services
  41. Xu, S.,Chen, X.,Han, A.(2008).Interval forecasting of crude oil price.Advances in Soft Computing,46,353-363.
  42. Yamaguchi, D.,Li, G. D.,Nagai, M.(2007).A grey-based rough approximation model for interval data processing.Information Sciences,177,4727-4744.
  43. Yamaguchi, D.,Li, G. D.,Nagai, M.(2007).A grey-rough set approach for interval data reduction of attributes.Lecture Notes in Computer Science,4585,400-410.
  44. Yang, Y.,John, R.(2012).Grey sets and greyness.Information Sciences,185,249-264.
  45. Yaou, Z.,Cui, L.(2012).Mechanical structure design optimization by blind number theory: time-dependent reliability.World academy of science, engineering and technology,62,784-787.