题名

A Dynamic Local and Global Conjoint Particle Swarm Optimization Algorithm

DOI

10.6186/IJIMS.2014.25.1.1

作者

Kai-Wen Zheng;Hsiao-Fan Wang

关键词

Particle swarm optimization ; dynamic ; benchmark functions ; effectiveness ; optimization problems

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

25卷1期(2014 / 03 / 01)

页次

1 - 16

内容语文

英文

英文摘要

Particle swarm optimization (PSO) algorithm has been developed extensively and many results have been reported. PSO algorithm has shown some important advantage by providing high speed of convergence in specific problems, but it has a tendency to be trapped in a near optimal solution and difficult in improving the accuracy by fine tuning. This paper proposes a dynamic local and global conjoint particle swarm optimization (DLGCPSO and DCPSO in short) algorithm of which all particles dynamically share the best information of the local, global and the group particles. It is tested with a set of eight benchmark functions with different parameters in comparison to PSO. Experimental results indicate that the DCPSO algorithm improves the search performance on the benchmark functions significantly, and shows the effectiveness in solving optimization problems.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Alatas, B.,Akin, E.,Bedri, O. A.(2009).Chaos embedded particle optimization algorithms.Chaos, Solitons & Fractals,40,1715-1734.
  2. Angel, E.,Aguirre, A. H.,Diharce, E. R. V.,Rionda, S. B.(2008).Constrained optimization with an improved particle swarm optimization algorithm.International Journal of Intelligent Computing and Cybernetics,1,425-453.
  3. Angeline, P. J.(1998).Using selection to improve particle swarm optimization.Proceedings of the IEEE International Conference on Evolutionary Computation,Anchorage, Alaska, USA:
  4. Bergh, F.,Engelbrecht, A. P.(2001).Training product unit networks using cooperative particle swarm optimizer.Proceedings of the Third Genetic and Evolution Computation Conference,Washington DC, USA.:
  5. Clerc, M.,Kennedy, J.(2002).The particle swarm explosion stability and convergence in a multi-dimensional complex space.IEEE Transactions on Evolutionary Computation,6,58-73.
  6. Coelho, L. S.(2008).A quantum particle swarm optimizer with chaotic mutation operator.Chaos, Solitons & Fractals,37,1409-1418.
  7. Coelho, L. S.,Mariani, V. C.(2009).A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch.Chaos, Solitons & Fractals,39,510-518.
  8. Eberhart, R. C.,Kennedy, J.(1995).A new optimizer using particle swarm theory.Proceedings of the Sixth International Symposium on Micro Machine and Human Science,Nagoya, Japan:
  9. Eberhart, R. C.,Shi, Y.(2001).Particle swarm optimization: developments, applications and resources.Proceedings of IEEE International Conference on Evolutionary Computation,Seoul, Korea:
  10. Eberhart, R. C.,Simpson, P.,Dobbins, R.(1996).Computational intelligence PC tools.San Diego, CA, USA:Academic Press Professional, Inc..
  11. Elhossini, A.,Areibi, S.,Dony, R.(2010).Strength Pareto particle swarm optimization and hybrid EA-PSO for multi-objective optimization.Evolutionary Computation,18,127-156.
  12. He, S.,Wu, Q. H.,Wen, J. Y.,Saunders, J. R.,Paton, R. C.(2004).A particle swarm optimizer with passive congregation.BioSystems,78,135-147.
  13. Ioan, C. T.(2003).The particle swarm optimization algorithm: convergence analysis and parameter selection.Information Processing Letters,85,317-325.
  14. Jiang, Y.,Hu, T.,Huang, C. C.,Wu, X.(2007).An improved particle swarm optimization algorithm.Applied Mathematics and Computation,193,231-239.
  15. Kennedy, J.(2000).Stereotyping: Improving particle swarm performance with cluster analysis.Proceedings of the IEEE International Conference on Evolutionary Computation,California, USA:
  16. Kennedy, J.,Eberhart, R. C.(1995).Particle swarm optimization.Proceedings of IEEE International Conference on Neural Networks,Perth, Australia:
  17. Kennedy, J.,Mendes, R.(2002).Population structure and particle swarm performance.Proceedings of the 2002 Congress on Evolutionary Computation,Honolulu, Hawaii, USA.:
  18. Liu, B.,Wang, L.,Jin, Y. H.,Tang, F.,Huang, D. X.(2005).Improved particle swarm optimization combined with chaos.Chaos, Solitons & Fractals,25,1261-1271.
  19. Shi, Y.,Eberhart, R. C.(1998).Modified particle swarm optimizer.Proceeding of IEEE International Conference on Evolutionary Computation,Anchorage, AK, USA.:
  20. Suganthan, P. N.,Hansen, N.,Liang, J. J.,Deb, K.,Chen, Y. P.,Auger, A.,Tiwari, S.(2005).,Singapore:Nanyang Technological University.
  21. Wang, Z. G.(2009).A modified particle swarm optimization.Journal of Harbin University of Commerce,25,464-466.
  22. Yang, X.,Yuan, J.,Yuan, J.,Mao, H.(2007).A modified particle swarm optimizer with dynamic adaptation.Applied Mathematics and Computation,189,1205-1213.