题名

An Inventory Model for Increasing Demand with Probabilistic Deterioration, Permissible Delay and Partial Backlogging

并列篇名

一個具遞增需求且擁有機率性損壞,遞延允許及部分備貨的存貨模式之研究

DOI

10.6186/IJIMS.2014.25.4.2

作者

K. F. Mary Latha;R. Uthayakumar

关键词

存貨 ; 二次需求函數 ; 允許遞延支付 ; 機率性損壞 ; 部分備貨 ; Inventory ; quadratic demand ; permissible delay in payments ; probabilistic eterioration ; partial backlogging

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

25卷4期(2014 / 12 / 01)

页次

297 - 316

内容语文

英文

中文摘要

本論文提出一個存貨模式去研究當擁有的損壞商品具有時間相依的二次需求及允許遞延支付,模式中允許缺貨且擁有部分備用品;最後本研究提出一個具備成本最低的最佳化政策。本研究的目標包含考慮三種不同的機率損壞函數並找出其對應成本。最後舉例說明本研究的優點,並進行敏感度分析以檢測當模式參數變化時,此三種模式最佳解的變化情形。

英文摘要

In this paper an inventory model for deteriorating items with time dependent quadratic demand and permissible delay in payments is developed. Shortages are allowed and are partially backlogged. An optimal policy that minimizes the total cost is developed. The objective of this study is to consider three different types of continuous probabilistic deterio-ration functions and to find the associated total cost. To illustrate the proposed model some numerical examples are given. Sensitivity analysis of the optimal solutions with respect to major parameters are carried out and comparison is made between the three models.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Tripathi, R. P.,Pandey, H. S.(2013).An EOQ model for deteriorating items with Weibull time dependent demand rate under trade credits.International Journal of Information and Management Sciences,24,329-347.
    連結:
  2. Bahari-Kashani, H.(1989).Replenishment schedule for deteriorating items with time-proportional demand.Journal of Operational Research Society,40,75-81.
  3. Chen, S. H.,Cardenas-Barron, L. E.,Teng, J. T.(2014).Retailer's economic order quantity when the supplier offers conditionally permissible delay in payments link to order quantity.Journal of Production Economics
  4. Chung, K. J.,Cardenas-Barron, L. E.(2013).The simplified solution procedure for deteriorating items under stock - dependent demand and two - level trade credit in the supply chain management.Applied Mathematical Modelling,37,4653-4660.
  5. Chung, K. J.,Cardenas-Barron, L. E.,Ting, P. S.(2014).An inventory model with non-instantaneous receipt and exponentially deteriorating items for an integrated three layer supply chain system under two levels of trade credit.International Journal of Production Economics
  6. Chung, K. J.,Ting, P. S.(1993).A heuristic for replenishment of deteriorating items with a linear trend in demand.Journal of Operational Research Society,44,1235-1241.
  7. Covert, R. P.,Philip, G. C.(1973).An EOQ model for items with weibull distribution deterioration.AIIE Transactions,5,323-326.
  8. Dave, U.,Patel, L. K.(1981).(T, Si) policy inventory model for deteriorating items with time proportional demand.Journal of Operations Research Society,32,137-142.
  9. Donaldson, W. A.(1977).Inventory replenishment policy for a linear trend in demand - an analytical solution.Operational research Quartely,28,663-670.
  10. Ghare, P. M.,Schrader, G. H.(1963).A model for an exponentially decaying inventory.Journal of Industrial Engineering,14,238-243.
  11. Ghosh, S. K.,Chaudhuri, K. S.(2006).An EOQ model with a quadratic demand, time - proportional deterioration and shortages in all cycles.International Journal of Systems Sciences,37,663-672.
  12. Giri, B. C.,Goswami, A.,Chaudhuri, K. S.(1996).An EOQ model for deteriorating items with time varying demand and costs.Journal of Operational Research Society,47,1398-1405.
  13. Goswami, A.,Chaudhuri, K. S.(1991).An EOQ model for deteriorating items with a linear trend in demand.Journal of Operational Research Society,42,1105-1110.
  14. Goyal, S. K.(1985).EOQ under conditions of permissible delay in payments.Journal of Operations Research Society,36,335-338.
  15. Goyal, S. K.,Giri, B. C.(2001).Recent trends in modeling of deteriorating inventory.European Journal of Operations Research,134,1-16.
  16. Hariga, M.(1995).An EOQ model for deteriorating items with shortages and time-varying demand.Journal of Operational Research Society,46,398-404.
  17. Jalan, A. K.,Chaudhuri, K. S.(1999).Structural properties of an inventory system with deterioration and trended demand.International Journal of Systems Sciencesm,30,627-633.
  18. Jalan, A. K.,Chaudhuri, K. S.(1999).An EOQ model for deteriorating items in a declining market with SFI policy.Korean Journal of Computational and Applied Mathematics,6,437-449.
  19. Jalan, A. K.,Giri, R. R.,Chaudhuri, K. S.(1996).EOQ model for items with weibull distribution deterioration, shortages and trended demand.International Journal of Systems Sciences,27,851-855.
  20. Khanra, S.,Chaudhuri, K. S.(2003).A note on an order level inventory model for a deteriorating item with time dependent quadratic demand.Computer and Operations Research,30,1901-1916.
  21. Khanra, S.,Ghosh, S. K.,Chaudhuri, K. S.(2011).An EOQ model for a deteriorating item with time dependent quadratic demand under permissible delay in payment.Applied Mathematics and Computation,218,1-9.
  22. Khanra, S.,Mandal, B.,Sarkar, B.(2013).An inventory model with time dependent demand and shortages under trade credit policy.Economic Modelling,35,349-355.
  23. Lin, C.,Tan, B.,Lee, W. C.(2000).An EOQ model for deteriorating items with shortages.International Journal of Systems Sciences,31,391-400.
  24. Maihami, R.,Abadi, I. N. K.(2012).Joint control of inventory and its pricing for non-instantaneously deteriorating items under permissible delay in payments and partial backlogging.Mathematical and Computer Modelling,55,1722-1733.
  25. Mary Latha, K. F.,Uthayakumar, R.(2012).An ordering policy for deteriorating items with quadratic demand, permissible delay and partial backlogging.Emerging Trends in Science, Engineering and Technology
  26. Mitra, A.,Cox, J. F.,Jesse, R. R.(1984).A note on deteriorating order quantities with a linear trend in demand.Journal of Operational Research Society,35,141-144.
  27. Nahmias, S.(1982).Perishable inventory theory: A review.Operations Research,30,680-708.
  28. Ouyang, L. Y.,Wu, K. S.,Yang, C. T.(2006).A study on an inventory model for non-instantaneous deteriorating items with permissible delay in payments.Computers and Industrial Engineering,51,637-651.
  29. Ouyang, L. Y.,Yang, C. T.,Chan, Y. L.,Cardenas-Barron, L. E.(2013).A comprehensive extension of the optimal replenishment decisions under two levels of trade credit policy depending on the order quantity.Applied Mathematics and Computation,224,268-277.
  30. Philip, G. C.(1974).A generalised EOQ model for items with weibull distribution.AIIE Transactions,6,159-162.
  31. Raffat, F.(1991).Survey of literature on continuously deteriorating inventory model.European Journal of Operations Research Society,42,27-37.
  32. Ritchie, E.(1984).The EOQ for linear increasing demand: A simple optimal solution.Journal of Operational Research Society,35,949-952.
  33. Ritchie, E.(1985).Stock replenishment quantities for unbounded linear increasing demand: an interestingconsequence of the optimal policy.Journal of Operational Research Society,36,737-739.
  34. Ritchie, E.(1980).Practical inventory replenishment policies for a linear trend in demand followed by a period of steady demand.Journal of Operational Research Society,31,605-613.
  35. Sana, S. S.,Chaudhuri, K. S.(2008).A deterministic EOQ model with delay in payments and price discount offers.European Journal of Operational Research,184,509-533.
  36. Sarkar, B.(2012).An EOQ model with delay in payments and stock dependent demand in the presence of imperfect production.Applied Mathematics and Computation,218,8295-8308.
  37. Sarkar, B.(2013).A production-inventory model with probabilistic deterioration in two-echelon supply chain management.Applied Mathematical Modelling,37,3138-3151.
  38. Sarkar, B.(2012).An EOQ model with delay-in payments and time-varying deterioration rate.Mathematical and Computer Modelling,55,367-377.
  39. Sarkar, B.(2012).An inventory model with reliability in an imperfect production process.Applied Mathematics and Computation,218,4881-4891.
  40. Sarkar, B.,Moon, I.(2013).Improved quality, setup cost reduction, and variable backorder costs in an imperfect production process.International Journal of Production Economics,155,204-213.
  41. Sarkar, B.,Sana, S. S.,Chaudhari, K. S.(2013).Inventory model with finite replenishment rate,trade credit policy and price -discount offer.Journal of Industrial Engineering,2013,1-18.
  42. Sarkar, B.,Sana, S. S.,Chaudhri, K. S.(2010).Optimal reliability, production lotsize and safety stock in an imperfect production system.International Journal of Mathematics in Operational Research,2,467-490.
  43. Sarkar, B.,Sana, S. S.,Chaudhri, K. S.(2010).Optimal reliability, production lotsize and safety stock:An economic manufacturing quantity model.International Journal of Management Science and Engineering Management,5,192-202.
  44. Sarkar, B.,Saren, S.,Wee, H. M.(2013).An inventory model with variable demand component cost and selling price for deteriorating items.Economic Modelling,30,306-310.
  45. Sarkar, B.,Sarkar, S.(2013).An improved inventory model with partial backlogging, time varying deterioration and stock-dependent demand.Economic Modelling,30,924-932.
  46. Sarkar, B.,Sarkar, S.(2013).Variable deterioration and demand - An inventory model.Economic Modelling,31,548-556.
  47. Sarkar, M.,Sarkar, B.(2013).An economic manufacturing quantity model with probabilistic deterioration in a production system.Economic Modelling,31,245-252.
  48. Sett, B. K.,Sarkar, B.,Goswami, A.(2012).A two-warehouse inventory model with increasing demand and time varying deterioration.Scientia Iranica, Transaction E: Industrial Engineering,19,306-310.
  49. Silver, E. A.(1979).A simple inventory replenishment decision rule for a linear trend in demand.Journal of Operational Research Society,30,71-75.
  50. Silver, E. A.,Meal, H. C.(1969).A simple modification of the EOQ for the case of a varying demand rate.Production Inventory Management,10,52-65.
  51. Widyadana, G. A.,Cardenas-Barron, L. E.,Wee, H. M.(2011).Economic order quantity model for deteriorating items and planned backorder level.Mathematical and Computer Modelling,54,1569-1575.
  52. Wu, J.,Ouyang, L. Y, and Cardenas-Barron, L. E.,Goyal, S. K.(2014).Optimal credit period and lot size for deteriorating items with expiration dates under two-level trade credit financing.European Journal of Operational Research,237,898-908.
  53. Wu, K. S.,Ouyang, L. Y.,Yang, C. T.(2006).An optimal replenishment policy for non-instantaneous deteriorating items with stock dependent demand and partial backlogging.International Journal of Production Economics,101,369-384.