题名 |
Optimal Control of Service Parameter for a Perishable Inventory System with Service Facility, Postponed Demands and Finite Waiting Hall |
并列篇名 |
考慮服務設施,推遲顧客需求和有限等待區的易腐品庫存系統中服務參數的最優控制之研究 |
DOI |
10.6186/IJIMS.2014.25.4.5 |
作者 |
J. Sebastian Arockia Jenifer;N. Sangeetha;B. Sivakumar |
关键词 |
服務之控制 ; 推遲需求 ; 有限壽命 ; 有限緩衝 ; Control of service rates ; postponed Demands ; finite life time ; finite buffer |
期刊名称 |
International Journal of Information and Management Sciences |
卷期/出版年月 |
25卷4期(2014 / 12 / 01) |
页次 |
349 - 370 |
内容语文 |
英文 |
中文摘要 |
本文研究連續檢查(s;S)庫存系統中由有限緩衝(等待室)和單一服務台組成的服務設施的最優化可控服務速率。顧客到達服務設施屬於一個波松分佈。顧客的需求在等待了指數的服務時間後得到滿足。對於一個到達的客戶,當看到等待室已滿的時候,會選擇依舊等待或者選擇離開屬於一個伯努利實驗。訂單補貨的時間屬於指數分佈。庫存中的每一項產品的生命週期也假設為指數分佈。本文研究在不同時間點上具體使用如何的服務速率以使長期總成本率得到最小化。本問題模式化為半-馬可夫決策問題。本文利用線性規劃演算法求得最佳策略並且以數值範例驗證求解過程。 |
英文摘要 |
This paper deals with the problem of optimally control service rates for a continuous review (s, S) inventory system with a service facility consisting of finite buffer(waiting hall) and a single server. The customers arrive according to a Poisson process. The customer’s demand is satisfied after an exponential service time. An arriving customer, who finds the buffer is full, enters into the pool of finite size or leaves the system according to a Bernoulli trial. The replenishment time of the order is distributed as exponential. The life time of each item in the inventory is assumed to be exponential distribution. Here we determine the service rates to be employed at each instant of time so that the long-run total expected cost rate is minimized. The problem is modelled as a semi-Markov decision problem. The stationary optimal policy is computed using linear programming algorithm and the results are illustrated numerically. |
主题分类 |
基礎與應用科學 >
資訊科學 社會科學 > 管理學 |
参考文献 |
|
被引用次数 |