题名

Prediciton of Student Academic Performance Using an ANFIS Approach

并列篇名

應用ANFIS方法於預測學生的學術表現

DOI

10.6186/IJIMS.2014.25.4.6

作者

陳正芳(Jeng-Fung Chen);Quang Hung Do

关键词

適應性類神經模糊推論系統 ; 預測 ; 學生入學 ; 高等教育 ; Adaptive Neuro-Fuzzy Inference System ; prediction ; student admission ; higher education

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

25卷4期(2014 / 12 / 01)

页次

371 - 389

内容语文

英文

中文摘要

入學管理是大學治校的重要課題。入學管理程序中的一個重要議題是判斷入學申請者是否適合就讀所申請的學系。為處理這個議題,我們需要一個能準確預測學生未來學術表現的模型。在本研究中,我們提出一個以適應性類神經模糊推論系統(ANFIS)為基的方法來預測學生未來的學術表現。我們以學生先前的不同測驗成績為輸入變數,而由於輸入變數太多,我們先辨識出較有影響的變數,然後ANFIS再以這些較有影響的變數來預測學生未來的學術表現。我們將本研究所提的方法和多元線性迴歸以及人工神經網路方法作比較,比較結果顯示,本研究所提的方法優於多元線性迴歸以及人工神經網路方法,並且可獲得相當穩定的結果。我們期望本研究的模型可提供一個有效的工具來支援入學管理程序。

英文摘要

Admission is one of the key administrative branches in a university. Regarding the admission process, the issue of whether a candidate is suitable for an academic program is of importance. This raises the need to propose a model that predicts the student’s future academic performance. This study presents an approach to the prediction of student academic performance based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). We have used previous exam results as input variables, and then predicted the students’ expected performances. Due to a large number of input variables, only the most influential ones affecting student academic performance were selected. We also identified the most influential input variables by analyzing their influence on expected academic performance. The ANFIS model was then parameterized using these input variables to predict student performance. The results showed that the proposed model achieved a high reliability. These results were also compared with those obtained from the Multiple Linear Regression (MLR) and the Artificial Neural Network (ANN) approaches. The comparative analysis indicated that the proposed approach performed better than the others. It is expected that this work may be used as a tool to support student admission procedures.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Do, Q. H.,Chen, J. F.(2013).Evaluating faculty staff: An application of group MCDM based on the fuzzy AHP approach.International Journal of Information and Management Sciences,24,131-150.
    連結:
  2. Akdemir, B.,Gües, S.,Oran, B.,Karaaslan, S.(2010).Prediction of cardiac end-systolic and end-diastolic diameters in m-mode values using adaptive neural fuzz inference system.Expert Systems with Applications,37,5720-5727.
  3. Akib, S.,Mohammadhassani, M.,Jahangirzadeh, A.(2014).Application of ANFIS and LR in prediction of scour depth in bridges.Computers & Fluids,91,77-86.
  4. Ata, R.,Kocyigit, Y.(2010).An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines.Expert Systems with Applications,37,5454-5460.
  5. Ayan, M. N. R.,Garcia, M. T. C.(2008).Prediction of university students' academic achievement by linear and logistic models.The Spanish Journal of Psychology,11,275-288.
  6. Azadeh, A.,Saberi, M.,Anvari, M.,Azaron, A.,Mohammadi, M.(2011).An adaptive network based fuzzy inference system - genetic algorithm clustering ensemble algorithm for performance as-sessment and improvement of conventional power plants.Expert Systems with Applications,38,2224-2234.
  7. Buragohain, M.,Mahanta, C.(2008).A novel approach for ANFIS modeling based on full factorial design.Applied Soft Computing,8,609-625.
  8. Chien, S. C.,Wang, T. Y.,Lin, S. L.(2010).Application of neuro-fuzzy networks to forecast innovation performance - The example of Taiwanese manufacturing industry.Expert Systems with Applications,37,1086-1095.
  9. Fragiadakis, N. G.,Tsoukalas, V. D.,Papazoglou, V. J.(2014).An adaptive neuro-fuzzy inference system (anfis) model for assessing occupational risk in the shipbuilding industry.Safety Science,63,226-235.
  10. Güneri, A. F.,Ertay, T.,Yücel, A.(2011).An approach based on ANFIS input selection and modeling for supplier selection problem.Expert Systems with Applications,38,14907-14917.
  11. Huang, S.,Fang, N.(2010).Prediction of student academic performance in an engineering dynamics course: development and validation of multivariate regression models.International Journal of Engineering Education,26,1008-1017.
  12. Jang, J. S.(1993).ANFIS: Adaptive-Network-Based Fuzzy Inference.IEEE Transaction on Systems Man and Cybernetics,23,665-685.
  13. Jang, J. S.,Sun, C. T.,Mizutani, E.(1997).Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence.New Jersey:Prentice Hall.
  14. Kanakana, G. M.,Olanrewaju, A. O.(2011).Predicting student performance in engineering education using an artificial neural network at Tshwane university of technology.Proceedings of the International Conference on Industrial Engineering, Systems Engineering and Engineering Management for Sustainable Global Development,Stellenbosch, South Africa:
  15. Kennedy, P.,Condon, M.,Dowling, J.(2003).Torque-ripple minimization in switched reluctant motors using a neuro-fuzzy control strategy.Proceedings of International Conference on Modeling and Simulation,1-8.
  16. Lykourentzou, I.,Giannoukos, I.,Mpardis, G.,Nikolopoulos, V.,Loumos, V.(2009).Early and Dynamic Student Achievement Prediction in E-Learning Courses Using Neural Networks.Journal of the American society for information science and technology,60,372-380.
  17. Metin, E. H.,Murat, H.(2008).Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system.International Journal of Refrigeration,31,1426-1436.
  18. Nauck, F. K.,Kruse, R.(1997).Foundation of Neuro-Fuzzy Systems.John Wiley & Sons Ltd..
  19. Norazah, Y.,Nor, B. A.,Mohd, S. O.,Yeap, C. N.(2010).A Concise Fuzzy Rule Base to Reason Student Performance Based on Rough-Fuzzy Approach, Fuzzy Inference System-Theory and application.InTech Publisher.
  20. Odeh, S. M.(2011).Using an adaptive neuro-fuzzy inference system (AnFis) algorithm for automatic diagnosis of skin cancer.Journal of Communication and Computer,8,751-755.
  21. Oladokun, V. O.,Adebanjo, A. T.,Charles-Owaba, O. E.(2008).Predicting students' academic performance using artificial neural network: A case study of an engineering course.The Pacific Journal of Science and Technology,9,72-79.
  22. Pal, K. S.,Mitra, S.(1999).Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing.New York:Wiley.
  23. Patil, P. P.,Sharma, S. C.,Jain, S. C.(2012).Performance evaluation of a copper omega type Coriolis mass flow sensor with an aid of ANFIS tool.Expert Systems with Applications,39,5019-5024.
  24. Petković, D.,Ćojbăsića, Ž.,Nikolić, V.,Shamshirband, S.,Kiah, M. L. M.,Anuar, N. B.,Wahab, A. W. A.(2014).Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission.Energy,64,868-874.
  25. Romero, C.,Ventura, S.(2007).Educational Data mining: A survey from 1995 to 2005.Expert Systems with Applications,33,135-146.
  26. Shekarian, E.,Gholizadeh, A. A.(2013).Application of adaptive network based fuzzy inference system method in economic welfare.Knowledge-Based Systems,39,151-158.
  27. Singh, R.,Kainthola, R.,Singh, T. N.(2012).Estimation of elastic constant of rocks using an ANFIS approach.Applied Soft Computing,12,40-45.
  28. Singh, T. N.,Kanchan, R.,Verma, A. K.,Saigal, K.(2005).A comparative study of ANN and neuro-fuzzy for the prediction of dynamic constant of rockmass.Journal of Earth System Science,114,75-86.
  29. Sugeno, M.(1985).Industrial Applications of Fuzzy Control.Amsterdam, the Netherlands:Elsevier, Science.
  30. Takagi, H.,Hayashi, I.(1991).NN-driven fuzzy reasoning.International Journal Approximate Reasoning,5,191-212.
  31. Takagi, T.,Sugeno, M.(1983).Derivation of fuzzy control rules from human operator's control actions.Proceedings of IFAC symposium fuzzy information knowledge representation and decision analysis
  32. Taylan, O.,Karagözoglu, B.(2009).An adaptive neuro-fuzzy model for prediction of student's academic performance.Computers & Industrial Engineering,57,732-741.
  33. Vandamme, J. P.,Meskens, N.,Superby, J. F.(2007).Predicting academic performance by data mining methods.Education Economics,15,405-419.
  34. Wei, M.,Bai, B.,Sung, A. H.,Liu, Q.,Wang, J.,Cather, M. E.(2007).Predicting injection profiles using ANFIS.Information Sciences,177,4445-4461.