参考文献
|
-
Do, Q. H.,Chen, J. F.(2013).Evaluating faculty staff: An application of group MCDM based on the fuzzy AHP approach.International Journal of Information and Management Sciences,24,131-150.
連結:
-
Akdemir, B.,Gües, S.,Oran, B.,Karaaslan, S.(2010).Prediction of cardiac end-systolic and end-diastolic diameters in m-mode values using adaptive neural fuzz inference system.Expert Systems with Applications,37,5720-5727.
-
Akib, S.,Mohammadhassani, M.,Jahangirzadeh, A.(2014).Application of ANFIS and LR in prediction of scour depth in bridges.Computers & Fluids,91,77-86.
-
Ata, R.,Kocyigit, Y.(2010).An adaptive neuro-fuzzy inference system approach for prediction of tip speed ratio in wind turbines.Expert Systems with Applications,37,5454-5460.
-
Ayan, M. N. R.,Garcia, M. T. C.(2008).Prediction of university students' academic achievement by linear and logistic models.The Spanish Journal of Psychology,11,275-288.
-
Azadeh, A.,Saberi, M.,Anvari, M.,Azaron, A.,Mohammadi, M.(2011).An adaptive network based fuzzy inference system - genetic algorithm clustering ensemble algorithm for performance as-sessment and improvement of conventional power plants.Expert Systems with Applications,38,2224-2234.
-
Buragohain, M.,Mahanta, C.(2008).A novel approach for ANFIS modeling based on full factorial design.Applied Soft Computing,8,609-625.
-
Chien, S. C.,Wang, T. Y.,Lin, S. L.(2010).Application of neuro-fuzzy networks to forecast innovation performance - The example of Taiwanese manufacturing industry.Expert Systems with Applications,37,1086-1095.
-
Fragiadakis, N. G.,Tsoukalas, V. D.,Papazoglou, V. J.(2014).An adaptive neuro-fuzzy inference system (anfis) model for assessing occupational risk in the shipbuilding industry.Safety Science,63,226-235.
-
Güneri, A. F.,Ertay, T.,Yücel, A.(2011).An approach based on ANFIS input selection and modeling for supplier selection problem.Expert Systems with Applications,38,14907-14917.
-
Huang, S.,Fang, N.(2010).Prediction of student academic performance in an engineering dynamics course: development and validation of multivariate regression models.International Journal of Engineering Education,26,1008-1017.
-
Jang, J. S.(1993).ANFIS: Adaptive-Network-Based Fuzzy Inference.IEEE Transaction on Systems Man and Cybernetics,23,665-685.
-
Jang, J. S.,Sun, C. T.,Mizutani, E.(1997).Neuro-fuzzy and soft computing: A computational approach to learning and machine intelligence.New Jersey:Prentice Hall.
-
Kanakana, G. M.,Olanrewaju, A. O.(2011).Predicting student performance in engineering education using an artificial neural network at Tshwane university of technology.Proceedings of the International Conference on Industrial Engineering, Systems Engineering and Engineering Management for Sustainable Global Development,Stellenbosch, South Africa:
-
Kennedy, P.,Condon, M.,Dowling, J.(2003).Torque-ripple minimization in switched reluctant motors using a neuro-fuzzy control strategy.Proceedings of International Conference on Modeling and Simulation,1-8.
-
Lykourentzou, I.,Giannoukos, I.,Mpardis, G.,Nikolopoulos, V.,Loumos, V.(2009).Early and Dynamic Student Achievement Prediction in E-Learning Courses Using Neural Networks.Journal of the American society for information science and technology,60,372-380.
-
Metin, E. H.,Murat, H.(2008).Comparative analysis of an evaporative condenser using artificial neural network and adaptive neuro-fuzzy inference system.International Journal of Refrigeration,31,1426-1436.
-
Nauck, F. K.,Kruse, R.(1997).Foundation of Neuro-Fuzzy Systems.John Wiley & Sons Ltd..
-
Norazah, Y.,Nor, B. A.,Mohd, S. O.,Yeap, C. N.(2010).A Concise Fuzzy Rule Base to Reason Student Performance Based on Rough-Fuzzy Approach, Fuzzy Inference System-Theory and application.InTech Publisher.
-
Odeh, S. M.(2011).Using an adaptive neuro-fuzzy inference system (AnFis) algorithm for automatic diagnosis of skin cancer.Journal of Communication and Computer,8,751-755.
-
Oladokun, V. O.,Adebanjo, A. T.,Charles-Owaba, O. E.(2008).Predicting students' academic performance using artificial neural network: A case study of an engineering course.The Pacific Journal of Science and Technology,9,72-79.
-
Pal, K. S.,Mitra, S.(1999).Neuro-Fuzzy Pattern Recognition: Methods in Soft Computing.New York:Wiley.
-
Patil, P. P.,Sharma, S. C.,Jain, S. C.(2012).Performance evaluation of a copper omega type Coriolis mass flow sensor with an aid of ANFIS tool.Expert Systems with Applications,39,5019-5024.
-
Petković, D.,Ćojbăsića, Ž.,Nikolić, V.,Shamshirband, S.,Kiah, M. L. M.,Anuar, N. B.,Wahab, A. W. A.(2014).Adaptive neuro-fuzzy maximal power extraction of wind turbine with continuously variable transmission.Energy,64,868-874.
-
Romero, C.,Ventura, S.(2007).Educational Data mining: A survey from 1995 to 2005.Expert Systems with Applications,33,135-146.
-
Shekarian, E.,Gholizadeh, A. A.(2013).Application of adaptive network based fuzzy inference system method in economic welfare.Knowledge-Based Systems,39,151-158.
-
Singh, R.,Kainthola, R.,Singh, T. N.(2012).Estimation of elastic constant of rocks using an ANFIS approach.Applied Soft Computing,12,40-45.
-
Singh, T. N.,Kanchan, R.,Verma, A. K.,Saigal, K.(2005).A comparative study of ANN and neuro-fuzzy for the prediction of dynamic constant of rockmass.Journal of Earth System Science,114,75-86.
-
Sugeno, M.(1985).Industrial Applications of Fuzzy Control.Amsterdam, the Netherlands:Elsevier, Science.
-
Takagi, H.,Hayashi, I.(1991).NN-driven fuzzy reasoning.International Journal Approximate Reasoning,5,191-212.
-
Takagi, T.,Sugeno, M.(1983).Derivation of fuzzy control rules from human operator's control actions.Proceedings of IFAC symposium fuzzy information knowledge representation and decision analysis
-
Taylan, O.,Karagözoglu, B.(2009).An adaptive neuro-fuzzy model for prediction of student's academic performance.Computers & Industrial Engineering,57,732-741.
-
Vandamme, J. P.,Meskens, N.,Superby, J. F.(2007).Predicting academic performance by data mining methods.Education Economics,15,405-419.
-
Wei, M.,Bai, B.,Sung, A. H.,Liu, Q.,Wang, J.,Cather, M. E.(2007).Predicting injection profiles using ANFIS.Information Sciences,177,4445-4461.
|