题名

Stationary Queue Length Distribution for a Discrete-Time Preemptive Priority Queue

DOI

10.6186/IJIMS.2016.27.3.2

作者

Hong-Bo Zhang;Qun-Zhen Zheng

关键词

Geo/Geo/1 queue ; preemptive priority ; QBD process ; joint stationary distribution ; stationary queue length

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

27卷3期(2016 / 09 / 01)

页次

237 - 251

内容语文

英文

英文摘要

This paper considers a discrete-time Geo/Geo/1 preemptive priority queue with two classes of customers. The queue system can be modeled by a quasi-birth-and-death (QBD) process with infinitely many phases. For the QBD process, we obtain explicit form of the joint stationary distribution and then we also get the stationary queue length distribution for lower-priority customers.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Alfa, A. S.(2010).Queueing Theory for Telecommunications, Discrete Time Modeling of a Single Node System.Springer.
  2. Alfa, A. S.(2016).Applied Discrete-Time Queues.Springer.
  3. Alfa, A. S.(1998).Matrix-geometric solution of discrete time analysis of MAP/PH/1 priority queue.Naval Research Logistics,45,23-50.
  4. Alfa, A. S.(2002).Discrete time queues and matrix-analytic methods.TOP,10,147-210.
  5. Alfa, A. S.,Liu, B.,He, Q. M.(2003).Discrete-time analysis of MAP/PH/1 multiclass general preemptive priority queue.Naval Research Logistics,50,662-682.
  6. Cobham, A.(1954).Priority assignment in waiting line problems.Operations Research,2,70-76.
  7. Fayolle, G.,Isanogorodski, R.,Malyshev, V.(1999).Random Walks in the Quarter-Plane.Springer.
  8. Hirzebruch, F.(2008).Eulerian polynomials.M¨unster Journal of Mathematics,1,9-14.
  9. Hunter, J. J.(1983).Mathematical Techniques of Applied Probability.New York:Academic Press.
  10. Meisling, T.(1958).Discrete time queueing theory.Operations Research,6,96-105.
  11. Miller, D. R.(1981).Computation of steady-state probabilities for M/M/1 priority queues.Operations Research,29,945-958.
  12. Neuts, M. F.(1981).Matrix-geometric Solutions in Stochastic Models: An Algorithmic Approach.Baltimore:The Johns Hopkins University Press.
  13. Rosen, K. H.,Michaels, J. G.,Gross, J. L.,Grossman, J. W.,Shier, D. R.(1999).Handbook of Discrete and Combinatorial Mathematics.CRC Press.
  14. Song, Y.,Liu, Z. M.,Dai, H. H.(2015).Exact tail asymptotics for a discrete-time preemptive priority queue.Acta Mathematicae Applicatae Sinica,31,43-58.
  15. Vázquez, A.,Oliveira, J. G.,DezsöZ, Goh, K.,Kondor, I.,Barabási, A.-L.(2006).Modeling bursts and heavy tails in human dynamics.Physical Review E,73,036127.
  16. White, H.,Christie, L.(1958).Queueing with preemptive priorities or with breakdown.Operations Research,6,79-95.
  17. Zhang, H. B.、Hou, Z. T.(2015)。Analysis for stationary queue length of Geo/Geo/1 preemptive priority queue。Applied Mathematics: A Journal of Chinese Universities,29,78-86。
  18. Zhao, J. A.,Li, B.,Cao, X. R.,Ahmad, I.(2006).A matrix-analytic solution for the DBMAP/PH/1 priority queue.Queueing Systems,53,127-145.