题名

A New Approach in Multiple Attribute Decision Making using R-norm entropy and Hamming Distance Measure

DOI

10.6186/IJIMS.2016.27.3.3

作者

Rajesh Joshi;Satish Kumar

关键词

Intuitionistic fuzzy entropy ; R-norm intuitionistic fuzzy entropy ; MADM ; TOPSIS ; weighted Hamming distance

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

27卷3期(2016 / 09 / 01)

页次

253 - 268

内容语文

英文

英文摘要

The theory of intuitionistic fuzzy (IF) set is well suitable to deal with the vagueness and hesitancy. In the present communication, we have considered R-norm entropy with both uncertainty and hesitancy degree of an IF set. Using this R-norm entropy, we have solved a multiple attribute decision making (MADM) problem in which attribute values are expressed with IF values. In MADM problem, we mainly encounter with two types of problems. First is when we don’t have any information regarding attribute weights and second is when we have little information about weights, i.e., they are partially known to us. In this paper, we have considered both the cases with examples. For the first case, we have used an extension of entropy weight method to calculate the attribute weights and in second case attribute weights are calculated by using the minimum entropy principle method which is based on solving a linear programming model. The two methods are effectively explained by taking real life examples. Also the two examples are calculated by using the TOPSIS method suggested by Chen and Tsao and shown that the outputs of both the methods coincide.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Shannon, C. E. (1948). A mathematical theory of communication, Bell Syst. Tech. J., Vol.27, 379-423.
  2. Atanassov, K. T.(1986).Intuitionistic fuzzy sets.Fuzzy Sets Syst.,20,87-96.
  3. Atanassov, K. T.(1999).Intuitionistic Fuzzy Sets.New York, NY, USA:Springer Verlag.
  4. Bajaj, R. K.,Kumar, T.,Gupta, N.(2012).R-norm intuitionistic fuzzy information measures and its computational applications.ICECCS 2012
  5. Bhandari, D.,Pal, N. R.(1993).Some new information measures for fuzzy sets.Inf. Sci.,67,209-228.
  6. Burillo, P.,Bustince, H.(2011).Entropy on intuitionistic fuzzy sets and on interval-valued fuzzy sets.Fuzzy Sets Syst,118,305-316.
  7. Chen, S.,Tan, J.(1994).Handling multicriteria fuzzy decision-making problems based vague set theory.Fuzzy Sets Syst.,67,163-172.
  8. Chen, T. Y.,Tsao, C. Y.(2008).The interval-valued fuzzy TOPSIS method and experimental analysis.Fuzzy Sets and Systems,159(11),1410-1428.
  9. Chen, T.,Li, C.(2010).Determinig objective weights with intuitionistic fuzzy entropy measures: A comparative analysis.Inf. Sci.,180,4207-4222.
  10. Choo, E. U.,Wedley, W. C.(1985).Optimal criterian weights in repetitive multicriteria decision making.J. Oper. Res. Soc.,36,983-992.
  11. Chu, A. T.W.,Kalaba, R. E.,Spingarn, K.(1979).A comparison of two methods for determining the weights of belonging to fuzzy sets.J. Optimiz. Theor. App.,27,531-538.
  12. De Luca, A.,Termini, S.(1972).A definition of non-probabilistic entropy in the setting of fuzzy set theory.Inf. Control.,20,301-312.
  13. Ejegwa, P. A.,Akowe, S. O.,Otene, P. M.,Ikyule, J. M.(2014).An overview on intuitionistic fuzzy sets.International Journal of Scientific and Technology Research,3(3),142-145.
  14. Fan, J.(2002).Some new fuzzy entropy formulas.Fuzzy Sets Syst,128,277-284.
  15. Fan, J.(2002).Some new fuzzy entropy formulas.Fuzzy Sets Syst,128,142-145.
  16. Fan, Z. P.(1996).Shenyang, China,Northeastern university.
  17. Gau, W.,Buehrer, D. J.(1993).Vague sets.IEEE Trans. Syst. Man Cybern,23,610-614.
  18. Güneralpa, B.,Gertnera, G.,Mendozaa, G.,Anderson, A.(2007).Evaluating probabilistic data with a possibilistic criterian in land-restoration decision making: effects on the precision of results.Fuzzy Sets Syst.,158,1546-1560.
  19. Herrera, F.,Herrera-Viedma, E.(2000).Linguistic decision analysis: Steps for solving decision problems under linguistic information.Fuzzy Sets Syst,115,67-82.
  20. Hwang, C. L.,Lin, M. J.(1987).Group decision making under multiple criteria: methods and applications.Berlin, Germany:Springer.
  21. Islam, S.,Roy, T. K.(2006).A new fuzzy multi-objective programming: entropy based geomet- ric programming and its application of transportation problems.European Journal of Operation Research,173,387-404.
  22. Kim, S. H.,Choi, S. H.,Kim, I. K.(1999).An interactive procedure for multiple attribute group decision making with incomplete information: range based approach.European Journal of Operational Research,118,139-152.
  23. Li, D.(2005).Multiattribute decision-making models and methods using intuitionistic fuzzy sets.J. Comput. Syst. Sci.,70,73-85.
  24. Li., D. F.(2012).Intuitionistic Fuzzy Set Decision and Game Analysis Methodologies.Beijing, China:National Defence Industry Press.
  25. Liu, H.,Wang, G.(2007).Multi-criteria decision-making methods based on intuitionistic fuzzy sets.Eur. J. Oper. Res.,179,220-223.
  26. Liu, M.,Ren, H.(2014).A new intuitionistic fuzzy entropy and application in multi- attribute decision making.Information,5,587-601.
  27. Pal, N. R.,Pal, S. K.(1989).Object background segmentation using new definitions of entropy.IEE Proc. E,366,284-295.
  28. Saaty, T. L.(1980).The analytical hierarchy process.New York, NY, USA.:McGraw-Hill.
  29. Szmidt, E.,Kacprzyk, J.(2001).Entropy for intuitionistic fuzzy sets.Fuzzy Sets and Systems,118(3),467-477.
  30. Verma, R. K.,Sharma, B. D.(2015).R-norm entropy on intuitionistic fuzzy set.Journal of Intelligent and Fuzzy Systems,28(1),327-355.
  31. Verma, R.,Sharma, B. D.(2013).Exponential entropy on intuitionistic fuzzy sets.Kybernetika,49,114-127.
  32. Vlachos, I. K.,Sergiadis, G. D.(2007).Intuitionistic fuzzy information-applications to pattern recognition.Pattern Recognition Letters,28(2),197-206.
  33. Wang, J.,Wang, P.(2012).Intuitionistic linguistic fuzzy multi-critria deision-making method based on intuitionistic fuzzy entropy.Control. Decis,27,1694-1698.
  34. Wei, C.,Gao, Z.,Guo, T.(2012).An intuitionistic fuzzy entropy measure based on trigonometric function.Control Decis,27,571-574.
  35. Wu, J.,Zhang, Q.(2011).Multicriteria decision-making method based on intuitionistic fuzzy weighted entropy.Expert Syst. Appl.,38,916-922.
  36. Xu, Z.(2007).Multi-person multi-attribute decision-making models under intuitionistic fuzzy enviornment.Fuzzy Optimization and Decision Making,6,221-236.
  37. Ye, J.(2010).Fuzzy dcision-making method based on the weighted correlation coefficient under in- tuitionistic fuzzy enviornment.Eur. J. Oper. Res.,205,202-204.
  38. Ye, J.(2010).Two effective masures of intuitionistic fuzzy entropy.Computing,87,55-62.
  39. Zadeh, L. A.(1968).Probability measures of fuzzy events.J. Math. Anal. Appl.,23,421-427.
  40. Zhang, Q.,Jiang, S.(2008).A note on information entropy measure for vague sets.Inf. Sci.,178,4184-4191.
被引用次数
  1. Kumar, Satish,Joshi, Rajesh(2017).Application of Interval-valued Intuitionistic Fuzzy R-norm Entropy in Multiple Attribute Decision Making.International Journal of Information and Management Sciences,28(3),233-251.
  2. Satish Kumar,Rakhi Gupta(2022)。Correlation Coefficient Based Extended VIKOR Approach Under Intuitionistic Fuzzy Environment。International Journal of Information and Management Sciences,33(1),35-54。
  3. Vikas Arya,Satish Kumar(2020)。Fuzzy Entropy Measure with an Applications in Decision Making Under Bipolar Fuzzy Environment based on TOPSIS Method。International Journal of Information and Management Sciences,31(2),99-121。