题名

An Application of Free Latin Squares to the Design of Experiments

DOI

10.6186/IJIMS.2017.28.2.2

作者

Miguel G. Palomo;Francisco Ballesteros

关键词

ANOVA ; experimental design theory ; free Latin square ; hypothesis testing ; Latin square ; randomized block design

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

28卷2期(2017 / 06 / 01)

页次

83 - 97

内容语文

英文

中文摘要

Free Latin squares are combinatorial objects that generalize Latin squares. In this paper we compare both objects, as designs of an experiment that use the method of Analysis of Variance (ANOVA).We show how free Latin square designs create more efficient experiments in certain cases and require fewer initial assumptions for their application. For the sake of the comparison, we begin with a detailed description of a hypothetical experiment that uses a Latin square. This is followed by another example, this time using a free Latin square design. We conclude by generalizing the use of free Latin squares in experiment design by determining a set of relevant parameters.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Crett´e Palluel, F. (1788). Sur les avantages et l’´economie que procurent les racines employ´ees `a l’engrais des moutons `a l’´etable, M´emoires d’agriculture, d’´economie rurale et domestique, Vol.14, 17-23.
  2. Palomo, M. G. Latin polytopes, Avail. from http://arxiv.org/abs/1402.0772
  3. Fisher, R. A. (1926). The arrangement of field experiments, Journal Ministry of Agriculture Vol.33, 503-513.
  4. Preece, D. A. Latin squares, Latin cubes, Latin rectangles, Statistics Reference Online. 2014. DOI: 10.1002/9781118445112.stat00867
  5. Palomo, M. G. Latin puzzles, Avail. from http://arxiv.org/abs/1602.06946
  6. Bailey, R. A.,Monod, H.(2001).Efficient semi-Latin rectangles: Designs for plant disease experiments.Scandinavian Journal of Statistics,28(2),257-270.
  7. Burns, G.,Glazer, A. M.(1990).Space Groups for Scientists and Engineers.Boston:Academic Press, Inc..
  8. Colbourn, C.,Dinitz, J.,Jeffrey, H.(2007).Handbook of Combinatorial Designs.Boca Raton, Florida:Chapman and Hall/CRC.
  9. Havlin, J. M.,Robinson, P. H.,Karges, K.(2015).Impacts of dietary fat level and saturation when feeding distillers grains to high producing dairy cows.Journal of Animal Physiology and Animal Nutrition,99(3),577-590.
  10. Jones, M.,Woodward, R.,Stoller, J.(2015).Increasing precision in agronomic field trials using Latin square designs.Agronomy Journal,107(1),20-24.
  11. Keedwell, A. D.,Dénes, J.(2015).Latin squares and their Applications..Amsterdam:North Holland.
  12. Montgomery, D. C.(2013).Design and Analysis of Experiments.Hoboken:John Wiley & Sons.
  13. Soicher, L. H.(2013).Optimal and efficient semi-Latin squares.Journal of statistical planning and inference,143(3),573-582.
  14. Stinson, D. R.(2004).Combinatorial Designs, Constructions and Analysis.New York:Springer-Verlag.
  15. Styan, G. P. H.,Boyer, C.,Chu, K. L.(2009).Some comments on Latin squares and on Graeco- Latin squares, illustrated with postage stamps and old playing cards.Statistical Papers,50,917-941.
  16. Wu, Y.,Zhou, Y.,Noonan, J. P.,Agaian, S. S.(2014).Design of image cipher using latin squares.Inf. Sci.,264,317-339.