题名

Interactive Multiple Criteria Decision Making for Large-Scale Multi-Objective Optimization Problems

DOI

10.6186/IJIMS.2017.28.4.1

作者

Janusz Miroforidis

关键词

Multiple criteria decision making ; large-scale multi-objective optimization ; approximate computations ; Pareto frontier navigation

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

28卷4期(2017 / 12 / 01)

页次

299 - 316

内容语文

英文

中文摘要

Despite the rapid development of optimization techniques, there are still practical multiobjective optimization problems hard to solve, e.g., the large-scale portfolio selection or intensity modulated radiation therapy planning. An effective search among potential decisions to such problems can be time consuming or even beyond allotted limits. To account for this, we propose an interactive multiple criteria decision making scheme with a mix of exact and approximate optimization methods. In that concept, a relatively small set of efficient solutions, so-called shell, is derived by an exact method before the decision making process begins. A shell provides for lower and upper bounds on values of objective functions of efficient decisions and such bounds are easily calculable. During the interactive-iterative decision process such bounds are calculated for decisions corresponding to the decision maker's temporal preferences. Such bounds serve in the decision making process as replacements for the exact values of the objective functions. Bounds stemming from a shell, if not tight enough to conduct the decision process, can be strengthened by lower bounds provided by so-called lower shells, i.e., sets of feasible decisions approximating the set of efficient decisions, derivable by a population based (inexact) method. We illustrate the operations of the scheme on a selected test problem.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Beasley, J. E. (1991). OR-Library, http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
  2. Bradley, P. J.(2014).Kriging-Pareto Front Approach for the Multi-Objective Exploration of Meta-material Topologies.Progress In Electromagnetics Research,39,141-150.
  3. Branke, J.(ed.),Deb, K.(ed.),Miettinen, K.(ed.),Słowiński, R.(ed.)(2008).Multiobjective Optimization-Interactive and Evolutionary Approaches.Berlin:Springer-Verlag.
  4. Deb, K.,Agrawal, S.,Pratap, A.,Meyarivan, T.(2002).A fast and elitist multi-objective genetic algorithm: NSGA-II.IEEE Transactions on Evolutionary Computation,6(2),182-197.
  5. Ehrgott, M.(2005).Multicriteria Optimization.Berlin:Springer-Verlag.
  6. Evtushenko, Yu. G.,Posypkin, M. A.(2013).Nonuniform Covering Method as Applied to Multi-criteria Optimization Problems with Guaranteed Accuracy.Computational Mathematics and Mathematical Physics,53(2),144-157.
  7. Filatovas, E.,Lančinskas, A.,Kurasova, O.(2016).A preference-based multi-objective evolu-tionary algorithm R-NSGA-II with stochastic local search.Central European Journal of Operations Research,25(4),859-878.
  8. Glover, F.,Laguna, M.(1997).Tabu Search.Boston:Kluwer Academic Publishers.
  9. Goldberg, D. E.(1989).Genetic Algorithms in Search, Optimization and Machine Learning.Addison-Wesley Publishing Co.
  10. Jain, H.,Deb, K.(2014).An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part II: handling constraints and extending to an adaptive approach.IEEE Trans Evolutionary Computations,18(4),602-622.
  11. Jones, D. R.,Schonlau, M.,Welch, W. J.(1998).Efficient global optimization of expensive black-box functions.Journal of Global Optimization,13,455-492.
  12. Kaliszewski, I.(2004).Out of the mist - towards decision-maker-friendly Multiple Criteria Decision Making support.European Journal of Operational Research,158(2),93-307.
  13. Kaliszewski, I.(2006).Soft Computing for Complex Multiple Criteria Decision Making.New York:Springer.
  14. Kaliszewski, I.,Kiczkowiak, T.,Miroforidis, J.(2016).Mechanical design, Multiple Criteria Decision Making and Pareto optimality gap.Engineering Computations,33(3),876-89.
  15. Kaliszewski, I.,Miroforidis, J.(2012).Real and virtual Pareto set upper approximations.Multiple Criteria Decision Making '11,Katowice:
  16. Kaliszewski, I.,Miroforidis, J.,Podkopaev, D.(2012).Interactive Multiple Criteria Decision Making based on preference driven Evolutionary Multiobjective Optimization with controllable accuracy.European Journal of Operational Research,216(1),293-307.
  17. Kaliszewski, I.,Miroforidis, J.,Podkopaev, D.(2009).A low-complexity approach to supply chain management.Proceedings of the 2009 International Conference in Management Sciences and Decision Making
  18. Kaliszewski, I.,Miroforidis, J.,Podkopayev, D.(2016).Multiple Criteria Decision Making by Multiobjective Optimization - A Toolbox.New York:Springer.
  19. Kennedy, J.,Eberhart, R.(2001).Swarm Intelligence.Morgan Kaufmann Publishers.
  20. Küfer, K.-H.,Monz, M.,Scherrer, A.,Süss, P.,Alonso, F.,Sultan, A. S. A.,Bortfeld, Th.,Craft, D.,Thieke, Chr.(2005).Multicriteria optimization in intensity modulated radiotherapy planning.Berichte des Fraunhofer ITWM,77
  21. Markowitz, H. M.(1991).Portfolio Selection: Effcient Diversiffication of Investments.Basil Blackwell.
  22. Merton, R. C.(1972).An analytical derivation of the efficient portfolio frontier.Journal of Financial and Quantitative Analysis,7(4),1851-1872.
  23. Michalewicz, Z.(1998).Genetic Algorithms + Data Structures .Berlin:Springer-Verlag.
  24. Miettinen, K. M.(1999).Nonlinear Multiobjective Optimization.Boston:Kluwer Academic Publishers.
  25. Miroforidis, J.(2010).Warsaw,Systems Research Institute, Polish Academy of Sciences.
  26. Mohammadpour, A.,Dehghani, A.,Byagowi, Z(2013).Using R-NSGA-II in the transmission expansion planning problem for a deregulated power system with wind farms.International Journal of Engineering Practical Research,2(4),201-204.
  27. Rote, G.(1992).The convergence rate of the sandwich algorithm for approximating convex functions.Computing,48,337-361.
  28. Ruiz, A. B.,Saborido, R.,Luque, M.(2015).A preference-based evolutionary algorithm for multiobjective optimization: the weighting achievement scalarizing function genetic algorithm.Journal of Global Optimization,62(1),101-129.
  29. Shan, S.,Wang, G. G.(2010).Survey of modelling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions.Structural and Multidisciplinary Optimization,41(2),219-241.
  30. Sindhya, K.,Miettinen, K.,Deb, K.(2013).A hybrid framework for evolutionary multi-objective optimization.IEEE Transactions on Evolutionary Computation,17(4),495-511.
  31. Thiele, L.,Miettinen, K.,Korhonen, P. J.,Molina, J.(2009).A preference-based evolutionary algorithm for multi-objective optimization.Evolutionary Computations,17(3),411-436.
  32. Wierzbicki, A.P.(ed.),Makowski, M.(ed.),Wessels, J.(ed.)(2000).Model-Based Decision Support Methodology with Environmental Applications.Dordrecht:Kluwer Academic Publishers.