题名

The Impact of Environmental Factors on Housing Prices: A Case Study of Taipei Housing Transactions

DOI

10.6186/IJIMS.201906_30(2).0006

作者

Pei-De Wang;Mingchin Chen

关键词

Data mining ; housing prices ; influencing patterns ; housing type

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

30卷2期(2019 / 06 / 01)

页次

185 - 202

内容语文

英文

中文摘要

Most research on housing price modeling only utilizes a single environmental factor. The goals of this paper are to select the appropriate factors and to identify the influencing patterns for 3 major types of real estates through model building that includes 49 housing factors. The datasets were composed by 33,027 transactions in Taipei City from July 2013 to the end of 2016. The models utilized were Decision Tree (DT), Artificial Neural Networks (ANN), Random Forest (RF), Model Tree (MT), and Multiple Regression (MR). The importance of each factor derived from the above 5 models is thus analyzed and ranked for the 3 housing types. Also, this paper adopts Generalized Additive Models (GAM) to derive the patterns of important factors influencing housing prices that includes increasing, decreasing, and non-linear relationships.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Acciani, C.,Fucilli, V.,Sardaro, R.(2011).Data Mining in Real Estate Appraisal: a Model Tree and Multivariate Adaptive Regression Spline Approach1.Aestimum,27-45.
  2. Bahia, I. S. H.(2013).A Data Mining Model by Using ANN for Predicting Real Estate Market: Comparative Study.International Journal of Intelligence Science,3(4),162-169.
  3. Bency, A. J.,Rallapalli, S.,Ganti, R. K.,Srivatsa, M.,Manjunath, B. S.(2017).Beyond Spatial Auto-Regressive Models: Predicting Housing Prices with Satellite Imagery.Applications of Computer Vision (WACV), 2017 IEEE Winter Conference
  4. Breiman, L.(2001).Random Forests.Machine Learning,45(1),5-32.
  5. Chen, M.,Wang, P.(2017).A Roadmap to Determine the Important Factors of the House Value: a Case Study by Using Actual Price Registration Data of Taipei Housing Transactions.Independent Journal of Management and Production,9(1),245-261.
  6. Chiang, Y. H.,Peng, T. C.,Chang, C. O.(2015).The Nonlinear Effect of Convenience Stores on Residential Property prices: A Case Study of Taipei.Taiwan, Habitat International,46,82-90.
  7. Cortez, P. (2016). Package ‘rminer’, Available at https://cran.rproject.org/web/packages/rminer/rminer.pdf
  8. Cortez, P.,Embrechts, M. J.(2013).Using Sensitivity Analysis and Visualization Techniques to Open Black Box Data Mining Models.Information Sciences,225,1-17.
  9. Diao, M.(2015).Selectivity, Spatial Autocorrelation and the Valuation of Transit Accessibility.Urban Studies,52(1),159-177.
  10. Diao, M.,Fan, Y.,Sing, T. F.(2017).A New Mass Rapid Transit (MRT) Line Construction and Housing Wealth: Evidence from the Circle Line.Journal of Infrastructure Policy and Development,1(1),64-89.
  11. Emrath, P(2002).Explaining House Prices.Housing Economics,50(1),9-13.
  12. Ferrari, L.,Berlingerio, M.,Calabrese, F.,Curtis-Davidson, B.(2012).Measuring the Accessibility of Public Transport Using Pervasive Mobility Data.IEEE Pervasive Computing,12(1),26-33.
  13. Hammer, T. R.,Coughlin, R. E.,Horn, E. T., IV(1974).The Effect of a Large Urban Park on Real Estate Value.Journal of the American Institute of Planners,40(4),274-277.
  14. Hanink, D. M.,Cromley, R. G.,Ebenstein, A. Y.(2012).Spatial Variation in the Determinants of House Prices and Apartment Rents in China.The Journal of Real Estate Finance and Economics,45(2),347-363.
  15. Hastie, T.,Tibshirani, R.(1986).Generalized Additive Models.Statistical Science,1(3),297-318.
  16. Kim, H. G.,Hung, K. C.,Park, S. Y.(2015).Determinants of Housing Prices in Hong Kong: a Box-Cox Quantile Regression Approach.The Journal of Real Estate Finance and Economics,50(2),270-287.
  17. Kim, K.,Lahr, M. L.(2014).The impact of HudsonBergen Light Rail on Residential Property Appreciation.Papers in Regional Science,93(Suppl.),S79-S97.
  18. Lee, C. C.,Ho, Y. M.,Chiu, H. Y.(2016).Role of Personal Conditions, Housing Properties, Private Loans, and Housing Tenure Choice.Habitat International,53,301-311.
  19. Owusu-Edusei, K.,Espey, M.,Lin, H.(2007).Does Close Count? School Proximity, School Quality, and Residential Property Values.Journal of Agricultural and Applied Economics,39(1),211-221.
  20. Pope, D. G.,Pope, J. C.(2015).When Walmart Comes to Town: Always Low Housing Prices? Always?.Journal of Urban Economics,87,1-13.
  21. Sah, V.,Conroy, S. J.,Narwold, A.(2016).Estimating School Proximity Effects on Housing Prices: the Importance of Robust Spatial Controls in Hedonic Estimations.The Journal of Real Estate Finance and Economics,53(1),50-76.
  22. Shyr, O.,Andersson, D. E.,Wang, J.,Huang, T.,Liu, O.(2013).Where do Home Buyers Pay Most for Relative Transit Accessibility? Hong Kong, Taipei and Kaohsiung Compared.Urban Studies,50(12),2553-2568.
  23. Visser, P.,Van Dam, F.,Hooimeijer, P.(2008).Residential Environment and Spatial Variation in House Prices in the Netherlands.Tijdschrift voor economische en sociale geografie,99(3),348-360.
  24. Wang, X. Y.(2006).A Study on the Housing Hedonic Price of Shanghai Based on the Hedonic Model.Shanghai:Tongji University.
  25. Wang, Y.,Potoglou, D.,Orford, S.,Gong, Y.(2015).Bus Stop, Property Price and Land Value Tax: A Multilevel Hedonic Analysis with Quantile Calibration.Land Use Policy,42,381-391.
  26. Wen, H.,Tao, Y.(2015).Polycentric Urban Structure and Housing Price in the Transitional China: Evidence from Hangzhou.Habitat International,46,138-146.
  27. Wen, H.,Zhang, Y.,Zhang, L.(2014).Do Educational Facilities Affect Housing Price? An Empirical Study in Hangzhou.China, Habitat International,42,155-163.
  28. Witten, I. H.,Frank, E.,Hall, M. A.,Pal, C. J.(2016).Data Mining: Practical Machine Learning Tools and Techniques.Morgan Kaufmann.
  29. Wood, S. N.(2006).Generalized Additive Models: an Introduction with R.Boca Raton:Chapman & Hall/CRC.
  30. Wood, S. N. (2018). Package 'mgcv', Available at https://cran.r-project.org/web/packages/mgcv/mgcv.pdf
  31. Woods, E.,Kyral, E.(1997).Ovum Evaluates: Data Mining.London:Ovum.
  32. Wu, C.,Ye, X.,Du, Q.,Luo, P.(2017).Spatial Effects of Accessibility to Parks on Housing Prices in Shenzhen.China, Habitat International,63,45-54.
  33. Zainodin, H. J.,Khuneswari, G.,Noraini, A.,Haider, F. A. A.(2015).Selected Model Systematic Sequence via Variance Inflationary Factor.International Journal of Applied Physics and Mathematics,5(2),105-114.
  34. Zoppi, C.,Argiolas, M.,Lai, S.(2015).Factors Influencing the Value of Houses: Estimates for the City of Cagliari.Italy Land Use Policy,42,367-380.