题名

Fuzzy Entropy Measure with an Applications in Decision Making Under Bipolar Fuzzy Environment based on TOPSIS Method

DOI

10.6186/IJIMS.202006_31(2).0001

作者

Vikas Arya;Satish Kumar

关键词

Renyi entropy ; Shannon entropy ; Tsallis entropy ; fuzzy set ; bi-polar fuzzy sets ; TOPSIS

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

31卷2期(2020 / 06 / 01)

页次

99 - 121

内容语文

英文

中文摘要

In this paper, based on the concept of Havrda-Charvat-Tsallis entropy, fuzzy entropy measure is introduced in the setting of fuzzy set theory. The properties of the new fuzzy measure are investigated in a mathematical view point. Several examples are applied to illustrate the performance of the proposed fuzzy measure. Comparison with several existing entropies indicates that the proposed fuzzy information measure has a greater ability in discrimaniting different fuzzy sets. Lastly, the proposed fuzzy information measure is applied to the problem of MCDM (multi criteria decision making) based on TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method under bipolar fuzzy environment. Two models are constructed to obtain the attribute weights in the cases that the information attribute weights is partially known and completely unknown. An example is employed to show the effectiveness of the new MCDM method.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Joshi, R.,Kumar, S.(2019).A new approach in multiple attribute decision making using exponential hesitant fuzzy entropy.International Journal of Information and Management Sciences,30(4),305-322.
    連結:
  2. Joshi, R.,Kumar, S.(2016).A new approach in multiple attribute decision making using R-norm entropy and Hamming distance measure.International Journal of Information and Management Sciences,27(3),253-268.
    連結:
  3. Kumar, S.,Choudhari, A.,Ram, G.,Gupta, V.(2013).On useful relative information measures of order α and type β.International Journal of Information and Management Sciences,24,95-106.
    連結:
  4. Aczel, J.,Daroczy, Z.(1975).On measures of information and their characterization.New York:Academic Press.
  5. Alghamdi, M. A.,Alshehri, N. O.,Akram, M.(2018).Multi-criteria decision making methods in bipolar fuzzy environment.International Journal of Fuzzy Systems,20,5-6.
  6. Arimoto, S.(1971).Information-theoretical considerations on estimations problems.Information Control,19,181-191.
  7. Bhandari, D.,Pal, N. R.(1993).Some new information measures for fuzzy sets.Information Sciences,67(3),204-228.
  8. Boekee, D. E.,Vander Lubbe, J. C. A.(1980).The R-norm information measure.Information Control,45,136-155.
  9. Chen, C. T.(2000).Extension of the TOPSIS for group decision-making under fuzzy environment.Fuzzy Sets System,1(114),1-9.
  10. De Luca, A.,Termini, S.(1972).A definition of a non-probabilistic entropy in the setting of fuzzy sets theory.Information Control,20,301-312.
  11. Havrda, J. H.,Charvat, F.(1967).Quantification method classification process: concept of structral - entropy.Kybernetika,3,30-35.
  12. Higashi, M.,Klir, G. J.(1982).On measures of fuzziness and fuzzy complements.International Journal of General Systems,8,169-180.
  13. Hooda, D.S.(2004).On generalized measures of fuzzy entropy.Mathematica Slovaca,54,315-325.
  14. Hung, W. L.,Yang, M. S.(2006).Fuzzy entropy on intuitionistic fuzzy sets.International Journal of Intelligient Systems,21,443-451.
  15. Hwang, C. H.,Yang, M. S.(2008).On entropy of fuzzy sets.International Journal of Uncertainty and Fuzziness Knowledge-Based System,16,519-527.
  16. Hwang, C. L.,Yoon, K.(1981).Multiple attribute decision-making-methods and applications: A State of the Art Survey.New York, USA.:Springer.
  17. Joshi, R.,Kumar, S.(2016).(R, S)-norm information measure and a relation between coding and questionnaire theory.Open Systems and Information Dynamics,23(3),1-12.
  18. Joshi, R.,Kumar, S.(2018).An (R, S)-norm fuzzy information measure with its applications in multiple-attribute decision-making.Computational and Applied Mathematics,37(3),2943-2964.
  19. Kosko, B.(1986).Fuzzy entropy and conditioning.Information Sciences,40(2),165-174.
  20. Kumar, S.,Kumar, A.(2012).Some coding theorem on generalized Havrda-Charvat-Tsallis entropy.Tamking Journal of Mathematics,43(1),437-444.
  21. Li, P.,Liu, B.(2008).Entropy of credibility distributions for fuzzy variables.IEEE Transactions on Fuzzy Systems,16(1),123-129.
  22. Li, X.,Wang, K.,Liu, L.,Xin, J.,Yang, H.,Gao, C.(2011).Application of the entropy weight and TOPSIS method in safety evaluation of coal mines.Procedia Engineering,26,2085-2091.
  23. Mishra, A. R.,Rani, P.(2018).Biparametric information measures-based TODIM technique for interval-valued intuitionistic fuzzy environment.Arbian Journal of Science and Engineering,43(6),3291-3309.
  24. Pal, N. R.,Pal S. R.(1992).Higher order fuzzy entropy and hybrid entropy of a set.Information Sciences,61(3),211-231.
  25. Pal, N. R.,Pal, S. K.(1989).Object background segmentation using new definition of entropy.IEE Proceedings E (Computers and Digital Techniques),136(4),284-295.
  26. Renyi, A.(1961).On measures of entropy and information.Proceedings of the 4th Barkley symposium on Mathemtaical statistics and probability
  27. Shannon, C. E. (1948). A mathematical theory of communication, The Bell System Technical Journal, Vol.27, No.3, 378-423.
  28. Sharma, B.,Taneja, I.(1975).Entropies of type (α, β) and other generalized measures of information theory.Metrika,22,202-215.
  29. Tsalli, C.(1988).Possible generalization of Boltzman-Gibbs statistics.Journal of Statistical Physics,52(1-2),480-487.
  30. Verma, R.,Sharma, B. D.(2011).On generalized exponential fuzzy entropy.International Journal of Mathematical and Computational Sciences,5(12),1402-1405.
  31. Wang, T. C.,Lee, H. D.(2009).Developing a fuzzy TOPSIS approach based on subjective weights and objective weights.Expert Systems with Applications,36(5),8980-8985.
  32. Wu, S.,Fu, Y.,Shen, H.,Liu, F.(2018).Using ranked weights and Shannon entropy to modify regional sustainable society index.Sustainable Cities and Society,41,443-448.
  33. Xiong, S. H.,Wu, S.,Chen, Z. S.,Li, Y. L.(2017).Generalized intuitionistic fuzzy entropy and its application in weight dteremination.Control and Decision,32(5),845-854.
  34. Yager, R. R.(1979).On the measure of fuzzi ness and negation. Part 1 : membership in the unit interval.International Journal of General Systems,5(4),221-229.
  35. Zadeh, L. A.(1968).Probability measures of fuzzy events.Journal of Mathematical Analysis and Applications,23,421-427.
  36. Zadeh, L. A.(1965).Fuzzy sets.Information and Control,8,338-353.
  37. Zhang, W. R.(1994).Bipolar fuzzy sets and relations: a computational framework for cognitive modeling and multiagent decision analysis.Proceedings of IEEE Conference Fuzzy Information Processing Society Biannual Conference
被引用次数
  1. Satish Kumar,Rakhi Gupta(2022)。Correlation Coefficient Based Extended VIKOR Approach Under Intuitionistic Fuzzy Environment。International Journal of Information and Management Sciences,33(1),35-54。