题名

Sentiment Analysis on Chinese Micro-blog Texts: A New Approach Using Enhanced Supervised Learning Model

DOI

10.6186/IJIMS.202106_32(2).0001

作者

Wei Shi;Shaoyi He;Yue Fu

关键词

Sentiment analysis ; Micro-blog text ; Opinion mining ; Enhanced supervised ; learning

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

32卷2期(2021 / 06 / 01)

页次

101 - 119

内容语文

英文

中文摘要

The sentiment analysis of the review texts of micro-blog is helpful for deep mining Chinese Micro-blog (Weibo)-one of the main social media in China. Aiming at the shortcomings of the widely used machine language in sentiment analysis of texts when dealing with sentences containing connectives, this paper formulates rules for dealing with Chinese connectives, incorporates expression symbols into feature vectors, calculates sentiment decision scores with sentiment dictionaries, and proposes an enhanced supervised learning model that is based on language rules and emotional scores. Examples show that the proposed model can significantly improve the effectiveness of text classification.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Abid, Fazeel,Alam, Muhammad,Yasir, Muhammad(2019).Sentiment analysis through recurrent variants latterly on convolutional neural network of Twitter.Future Generation Computer System-The International Journal of Escience,95,292-308.
  2. Abudalfa, S. I.,Ahmed, M. A.(2019).Semi-Supervised Target-Dependent Sentiment Classification for Micro-Blogs.Journal of Computer Science and Technology,19,e06-e06.
  3. Agarwal, A.,Xie, B.,Vovsha, I.,Rambow, O.,Passonneau, R.(2011).Sentiment analysis of twitter data.Proceedings of the Workshop on Language in Social Media (LSM 2011)
  4. Ai, Y.,Chen, Z.,Wang, S.,Pang, Y.(2018).Recognizing emotions in chinese text using dictionary and ensemble of classifiers.Third International Workshop on Pattern Recognition
  5. AlAwadhi, S.,Al-Daihani, S. M.(2019).Marketing academic library information services using social media.Library Management,40,228-239.
  6. Balbi, S.,Misuraca, M.,Scepi, G.(2018).Combining different evaluation systems on social media for measuring user satisfaction.Information Processing & Management,54,674-685.
  7. Balijepalli, S.(2007).Faculty of the Graduate School, University of Maryland.
  8. Baum, M. A.,Potter, P. B.(2019).Media, public opinion, and foreign policy in the age of social media.The Journal of Politics,81,747-756.
  9. Bergstr`‘om, A.,Jervelycke Belfrage, M.(2018).News in social media: incidental consumption and the role of opinion leaders.Digital Journalism,6,583-598.
  10. Bollen, J.,Mao, H.,Pepe, A.(2011).Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena.Fifth International AAAI Conference on Weblogs and Social Media
  11. Bollen, J.,Mao, H.,Zeng, X.(2011).Twitter mood predicts the stock market.Journal of Computational Science,2,1-8.
  12. Bollen, J.,Pepe, A.,Mao, H.(2010).Modeling public mood and emotion: Twitter sentiment and socioeconomic phenomena.WWW 2010,Raleigh, North Carolina:
  13. Cambria, E,Schuller, B,Xia, Y,Havasi, C.(2013).New avenues in opinion mining and sentiment analysis.IEEE Intelligent Systems,28,15-21.
  14. Chaovalit, P.,Zhou, L.(2005).Movie review mining: A comparison between supervised and unsupervised classification approaches.Proceedings of the 38th Annual Hawaii International Conference on System Sciences, HICSS 2005
  15. Chaturvedi, I.,Cambria, E.,Welsch, R. E.,Herrera, F.(2018).Distinguishing between facts and opinions for sentiment analysis: Survey and challenges.Information Fusion,44,65-77.
  16. Cheng, J.,Zhang, X.,Li, P.,Zhang, S.,Ding, Z.,Wang, H.(2016).Exploring sentiment parsing of microblogging texts for opinion polling on chinese public figures.Applied Intelligence,45,429-442.
  17. Chikersal, P.,Poria, S.,Cambria, E.(2015).SeNTU: Sentiment analysis of tweets by combining a rule-based classifier with supervised learning.Proceedings of the International Workshop on Semantic Evaluation (SemEval 2015)
  18. Chopade, C. R.(2015).Text based emotion recognition: A survey.International Journal of Science and Research,4,409-414.
  19. Cureg, M. Q.,De La Cruz, J. A. D.,Solomon, J. C. A.,Saharkhiz, A. T.,Balan, A. K. D.,Samonte, M. J. C.(2019).Sentiment Analysis on Tweets with Punctuations, Emoticons, and Negations.Proceedings of the 2019 2nd International Conference on Information Science and Systems
  20. Ding, S.,Meng, M,Li, X(2014).Research on Identity Sentence Recognition for Chinese Weibo.Journal of Information Science,33,175-182.
  21. Ellen, J.(2011).All about Microtext-A Working Definition and a Survey of Current Microtext Research within Artificial Intelligence and Natural Language Processing.ICAART
  22. Geng, X.,Zhang, Y.,Jiao, Y.,Mei, Y.(2019).A Novel Hybrid Clustering Algorithm for Topic Detection on Chinese Microblogging.IEEE Transactions on Computational Social Systems,6,289-300.
  23. Go, A.,Bhayani, R.,Huang, L.(2009).CS224N Project ReportCS224N Project Report,Stanford:.
  24. Hasan, A.,Moin, S.,Karim, A.,Shamshirband, S.(2018).Machine learning-based sentiment analysis for twitter accounts.Mathematical and Computational Applications,23,11.
  25. Hasan, M.,Rundensteiner, E.,Agu, E.(2019).Automatic emotion detection in text streams by analyzing Twitter data.International Journal of Data Science and Analytics,7,35-51.
  26. He, Y,Zhu, C,Zhu, T,Guo, Q.(2018).Research on the Emotional Tendency of Hot Topics in Micro-blogs.Information Studies: Theory & Application,41,1-9.
  27. Houston, J. B.,Hawthorne, J.,Perreault, M. F.,Park, E. H.,Goldstein Hode, M.,Halliwell, M. R.,Griffith, S. A.(2015).Social media and disasters: a functional framework for social media use in disaster planning, response, and research.Disasters,39,1-22.
  28. Java, A.,Song, X.,Finin, T.,Tseng, B.(2007).Why we twitter: understanding microblogging usage and communities.Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 workshop on Web mining and social network analysis
  29. Jiang X.,Xia, K.,Xia, X.,Zu, B.(2015).Speech Emotion Recognition Using Semi-Definite Programming Multiple-Kernel SVM.Journal of Beijing University of Posts and Telecommunications,38,67-71.
  30. Kamal, R.,Shah, M. A.,Maple, C.,Masood, M.,Wahid, A.,Mehmood, A.(2019).Emotion Classification and Crowd Source Sensing: A Lexicon Based Approach.IEEE Access,7,27124-27134.
  31. Kaur, H.,Pannu, H. S.,Malhi, A. K.(2019).Multimedia blog volume prediction using adaptive neuro fuzzy inference system and evolutionary algorithms.Multimedia Tools and Applications,1-35.
  32. L´opez, D. T.(2019).The Society of the Digital Swarm: Microblogging and Construction of Subjectivity in Homo Digitalis.Handbook of Research on Industrial Advancement in Scientific Knowledge
  33. Li, R.,Lin, Z.,Fu, P.,Wang, W.,Shi, G.(2019).EmoMix: Building an Emotion Lexicon for Compound Emotion Analysis.International Conference on Computational Science,Cham:
  34. Lin, D.,Li, L.,Cao, D.,Lv, Y.,Ke, X.(2018).Multi-modality weakly labeled sentiment learning based on Explicit Emotion Signal for Chinese microblog.Neuro computing,272,258-269.
  35. Liu, B.(2012).Sentiment analysis and opinion mining.Synthesis Lectures on Human Language Technologies,5,158-167.
  36. Liu, Z.,Liu, L.(2012).Empirical Classification of Chinese Weibo Based on Machine Learning.Computer Engineering and Application,48,1-4.
  37. Ma, L.,Liu, X.,Gong, Y.(2016).Semantic-based Tendency Analysis of Short Texts in Microblog.Computer Applied Research,33,2914-2918.
  38. Medhat, W.,Hassan, A.,Korashy, H.(2014).Sentiment analysis algorithms and applications: A survey.Ain Shams Engineering Journal,5,1093-1113.
  39. Mostafa, M. M.(2019).Clustering halal food consumers: A Twitter sentiment analysis.International Journal of Market Research,61,320-337.
  40. Neubaum, G.,Krämer, N. C.(2017).Opinion climates in social media: Blending mass and interpersonal communication.Human Communication Research,43,464-476.
  41. Pan, J.,Mou, N.,Liu, W.(2019).Emotion Analysis of Tourists Based on Domain Ontology.Proceedings of the 2019 International Conference on Data Mining and Machine Learning
  42. Pang, B.,Lee, L.(2008).Opinion mining and sentiment analysis.Foundations and Trends in Information Retrieval,2,1-13.
  43. Rahimi, Z.,Noferesti, S.,Shansfard, M.(2019).Applying data mining and machine learning techniques for sentiment shifter identification.Language resources and evaluation,53,279-302.
  44. Ramanathan, V.,Meyyappan, T.(2019).Twitter Text Mining for Sentiment Analysis on People’s Feedback about Oman Tourism.2019 4th MEC International Conference on Big Data and Smart City (ICBDSC)
  45. Rout, J,Choo, K.,Dash, A.,Bakshi, S.,Jena, S.,Williams, K.(2018).A model for sentiment and emotion analysis of unstructured social media text.Electronic Commerce Research,18,181-199.
  46. Sahni, D.,Aggarwal, G.(2015).Recognizing Emotions and Sentiments in Text: A Survey.International Journal of Advanced Research in Computer Science and Software Engineering,5,202-205.
  47. Sailunaz, K.,Alhajj, R.(2019).Emotion and Sentiment Analysis from Twitter Text.Journal of Computational Science
  48. Shi, W.,Wang, H.,He, S.(2013).Sentiment analysis of Chinese microblogging based on sentiment ontology: A case study of ‘7.23 Wenzhou Train Collision’.Connection Science,25,161-178.
  49. Shi, W.,Wang, H.,He, S.(2012).Study on construction of fuzzy Emotion ontology Based on HowNet.Journal of the China Society for Scientific and Technical Information,31,595-602.
  50. Sohangir, S.,Wang, D.,Pomeranets, A.,Khoshgoftaar, T. M.(2018).Big Data: Deep Learning for financial sentiment analysis.Journal of Big Data,5,3.
  51. Tang, D.,Zhang, Z.,He, Y.,Lin, C.,Zhou, D.(2019).Hidden topic-emotion transition model for multi-level social emotion detection.Knowledge-Based Systems,164,426-435.
  52. Tripathy, A.,Agrawal, A.,Rath S.(2016).Classification of sentiment reviews using n-gram machine learning approach.Expert Systems with Applications,57,117-126.
  53. Turney, P.(2002).Thumbs up or thumbs down? Semantic orientation applied to unsupervised classification of reviews.Proceedings of the 40th Annual Meeting on Association for Computational Linguistics
  54. Tyagi, Priyanka,Chakraborty, Sudeshna,Tripathi, R. C.,Choudhury, Tanupriya(2019).Literature Review of Sentiment Analysis Techniques for Microblogging Site.International Conference on Advances in Engineering Science Management & Technology (ICAESMT) - 2019,Dehradun, India:
  55. Vo, P. N.,Ngoc, T. V. T.(2019).Data Mining for Social Network Analysis Using a CLIQUE Algorithm.Cognitive Social Mining Applications in Data Analytics and Forensics
  56. Wang, C. H.,Han, D.(2018).Sentiment Analysis of Micro-blog Integrated on Explicit Semantic Analysis Method.Wireless Personal Communications,102,1095-1105.
  57. Wang, N.,Ke, S.,Chen, Y.,Yan, T.,Lim, A.(2019).Textual Sentiment of Chinese Microblog Toward the Stock Market.International Journal of Information Technology & Decision Making (IJITDM),18,649-671.
  58. Wang, W. Y.,Pauleen, D. J.,Zhang, T.(2016).How social media applications affect B2B communication and improve business performance in SMEs.Industrial Marketing Management,54,4-14.
  59. Wiegand, M.,Balahur, A.,Roth, B.,Klakow, D.,Montoyo, A.(2010).A survey on the role of nega-tion in sentiment analysis.Proceedings of the Workshop on Negation and Speculation in Natural Language Processing
  60. Wu, X.,Wang, J.(2011).How about micro-blogging service in China: analysis and mining on sina micro-blog.Proceedings of 1st international symposium on From digital footprints to social and community intelligence
  61. Yao, T.,Lou, D.(2007).A Study on the Tendency Discrimination of Chinese Emotional Words.Seventh International Conference on Chinese Information Processing,wuhan:
  62. Yuan, D.,Zhou, Y.,Li, R.,Lu, P.(2014).Sentiment analysis of microblog combining dictionary and rules.2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)
  63. Yuan, Z.,Purver, M.(2015).Predicting emotion labels for chinese microblog texts.Advances in Social Media Analysis,Cham:
  64. Zhang, J.,Xia, Y.,Ma, B.,Yao, J.,Hong, Y.(2011).Thread cleaning and merging for microblog topic detection.Proceedings of 5th International Joint Conference on Natural Language Processing
  65. Zhang, L.,Wang, S.,Liu, B.(2018).Deep learning for sentiment analysis: A survey.Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery,8,e1253.
  66. Zhang, S.,Wei, Z.,Wang, Y.,Liao, T.(2018).Sentiment analysis of Chinese micro-blog text based on extended sentiment dictionary.Future Generation Computer Systems,81,395-403.
  67. Zhou, J.,Ye, S.,Wang, H.(2018).Application of Convolutional Neural Network in Short Text Emotional Multi-Classification Tagging.Computer Engineering and Application,54,133-138.
  68. Zhou, S.,Guan, J.,Yu, H.,Hu, Y.(2001).Chinese Documents Categorization Based on N-gram Information.Journal of Chinese Information Processing,15,34-39.