题名

A Hybrid Deep Learning Model for Predicting Stock Market Trend Prediction

DOI

10.6186/IJIMS.202106_32(2).0002

作者

Li-Chen Cheng;Wen-Shiu Lin;Yu-Hsin Lien

关键词

Deep learning ; Word2Vec ; Stock prediction ; Text mining

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

32卷2期(2021 / 06 / 01)

页次

121 - 140

内容语文

英文

中文摘要

In this work we propose a novel predictive model for improving investment capability that uses structured and unstructured data to predict stock price movements. We adopt deep learning techniques that have already been used successfully for natural language processing tasks, along with traditional data retrieval, to analyze and predict trends in the Taiwan stock market, and conduct experiments on both structured and unstructured data. Machine learning and data preprocessing techniques such as word2vec are used to train prediction models. Our experiments show that using deep learning on structured data yields improved accuracy, which attests the suitability of deep learning for structured data, especially for long short-term memory (LSTM) models. Finally, we combined structured and unstructured data using a combined approach to achieve improved accuracy with lower investment risks. The models in this work are thus suitable for real-world applications, including day trading strategy planning as well as long or short transaction strategy planning.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Akita, R.,Yoshihara, A.,Matsubara, T.,Uehara, K.(2016).Deep learning for stock prediction using numerical and textual information.Computer and Information Science (ICIS), 2016 IEEE/ACIS 15th International Conference on
  2. Ballings, M.,Van den Poel, D.,Hespeels, N.,Gryp, R.(2015).Evaluating multiple classifiers for stock price direction prediction.Expert Systems with Applications,42(20),7046-7056.
  3. Bharathi, S.,Geetha, A.(2017).Sentiment analysis for effective stock market prediction.International Journal of Intelligent Engineering and Systems,10(3),146-154.
  4. Bollen, J.,Mao, H.,Zeng, X. J.(2011).Twitter mood predicts the stock market.Journal of Computational Science,2(1),1-8.
  5. Britz, D. (2015). Recurrent Neural Networks Tutorial, Part 1 - Introduction to RNNs. Retrieved from http://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-rnns/
  6. Chen, S.,Chen, K.-Y.,Hung, H.,Chen, B.(2015).Exploring Word Embedding and Concept Information for Language Model Adaptation in Mandarin Large Vocabulary Continuous Speech Recognition.Proceedings of the 27th Conference on Computational Linguistics and Speech Processing (ROCLING 2015)
  7. Ding, X.,Zhang, Y.,Liu, T.,Duan, J.(2015).Deep Learning for Event-Driven Stock Prediction.Ijcai
  8. Fama, E. F.(1991).Efficient capital markets: II.The Journal of Finance,46(5),1575-1617.
  9. Fischer, T.,Krauß, C.(2017).Deep learning with long short-term memory networks for financial market predictions.European Journal of Operational Research,270(2),654-669.
  10. Fukushima, K.,Miyake, S.(1982).Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition.Competition and cooperation in neural nets
  11. Graves, A.,Schmidhuber, J.(2005).Framewise phoneme classification with bidirectional LSTM and other neural network architectures.Neural Networks,18(5),602-610.
  12. Heaton, J.,Polson, N.,Witte, J.(2016).,未出版
  13. Hinton, G. E.(1986).Learning distributed representations of concepts.Proceedings of the eighth annual conference of the cognitive science society
  14. Hochreiter, S.(1991).Technische Universität München.
  15. Hochreiter, S.,Schmidhuber, J.(1997).Long short-term memory.Neural computation,9(8),1735-1780.
  16. Ichinose, K.,Shimada, K.(2016).Stock market prediction from news on the Web and a new evaluation approach in trading.2016 5th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)
  17. LeCun, Y.,Bengio, Y.,Hinton, G.(2015).Deep learning.Nature,521(7553),436-444.
  18. LeCun, Y.,Boser, B.,Denker, J. S.,Henderson, D.,Howard, R. E.,Hubbard, W.,Jackel, L. D.(1989).Backpropagation applied to handwritten zip code recognition.Neural computation,1(4),541-551.
  19. LeCun, Y.,Bottou, L.,Bengio, Y.,Haffner, P.(1998).Gradient-based learning applied to document recognition.Proceedings of the IEEE,86(11),2278-2324.
  20. McCulloch, W. S. and Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity, The Bulletin of mathematical biophysics, Vol.5, No.4, 115-133.
  21. Mikolov, T.,Chen, K.,Corrado, G.,Dean, J.(2013).,未出版
  22. Mikolov, T.,Karafiat, M.,Burget, L.,Cernock´y, J.,Khudanpur, S.(2010).Recurrent neural network based language model.Paper presented at the Interspeech
  23. Mikolov, T.,Sutskever, I.,Chen, K.,Corrado, G. S.,Dean, J.(2013).Distributed representations of words and phrases and their compositionality.Advances in neural information processing systems
  24. Nassirtoussi, A. K.,Aghabozorgi, S.,Wah, T. Y.,Ngo, D. C. L.(2014).Text mining for market prediction: A systematic review.Expert Systems with Applications,41(16),7653-7670.
  25. Nassirtoussi, A. K.,Aghabozorgi, S.,Wah, T. Y.,Ngo, D. C. L.(2015).Text mining of news-headlines for FOREX market prediction: A Multi-layer Dimension Reduction Algorithm with semantics and sentiment.Expert Systems with Applications,42(1),306-324.
  26. Pagolu, V. S.,Reddy, K. N.,Panda, G.,Majhi, B.(2016).Sentiment analysis of Twitter data for predicting stock market movements.2016 international conference on signal processing, communication, power and embedded system (SCOPES)
  27. Rumelhart, D. E.,Hinton, G. E.,Williams, R. J.(1986).Learning representations by back-propagating errors.Nature,323(6088),533.
  28. Schumaker, R. P.,Zhang, Y.,Huang, C.-N.,Chen, H.(2012).Evaluating sentiment in financial news articles.Decision Support Systems,53(3),458-464.
  29. Tetlock, P. C.,Saar-Tsechansky, M.,Macskassy, S.(2008).More than words: Quantifying language to measure firms’ fundamentals.The Journal of Finance,63(3),1437-1467.
  30. Tumarkin, R.,Whitelaw, R. F.(2001).News or noise? Internet postings and stock prices.Financial Analysts Journal,57(3),41-51.
  31. Vargas, M. R.,de Lima, B. S.,Evsukoff, A. G.(2017).Deep learning for stock market prediction from financial news articles.Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA), 2017 IEEE International Conference on
  32. Vargas, M. R.,De Lima, B. S.,Evsukoff, A. G.(2017).Deep learning for stock market prediction from financial news articles.2017 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)
  33. Vu, T.-T.,Chang, S.,Ha, Q. T.,Collier, N.(2012).An experiment in integrating sentiment features for tech stock prediction in twitter.Proceedings of the Workshop on Information Extraction and Entity Analytics on Social Media Data
  34. Williams, R. J.,Zipser, D.(1989).A learning algorithm for continually running fully recurrent neural networks.Neural Computation,1(2),270-280.
  35. Yan, D.,Zhou, G.,Zhao, X.,Tian, Y.,Yang, F.(2016).Predicting stock using microblog moods.China Communications,13(8),244-257.
  36. Yu, Y.,Duan, W.,Cao, Q.(2013).The impact of social and conventional media on firm equity value: A sentiment analysis approach.Decision Support Systems,55(4),919-926.
  37. 李淑惠, S.-H.(2014)。東吳大學資訊管理學系。