题名

Topic Modeling and Sentiment Analysis of US' Afghan Exit Twitter Data: A Text Mining Approach

DOI

10.6186/IJIMS.202303_34(1).0003

作者

Addo Prince Clement;Akpatsa Samuel Kofi;Dorgbefu Jr Maxwell;Dagadu Joshua Caleb;Tattrah Victor Dela;Dzoagbe Newton Kofi;Fiawoo Duncan Dodzi;Nartey Juliana

关键词

Twitter sentiment analysis ; Text classification ; Afghanistan ; Machine learning

期刊名称

International Journal of Information and Management Sciences

卷期/出版年月

34卷1期(2023 / 03 / 01)

页次

51 - 64

内容语文

英文

中文摘要

The withdrawal of US troops from Afghanistan and the subsequent collapse of the Afghan government threatens the lives, security, and human right of many people. Twitter and other social media platforms took the lead in opinion and sentiment sharing, allowing researchers to make a real-time assessment that may help authorities develop early response strategies. In this study, 362,566 tweets relating to the exit of the US troops from Afghanistan collected between August 11 and 27, 2021, are analyzed using text mining techniques, including sentiment analysis and word cloud analysis. The analysis shows diverse topics on social media related to the fallout, and the general reaction regarding the crisis was negative.

主题分类 基礎與應用科學 > 資訊科學
社會科學 > 管理學
参考文献
  1. Aday, S.(2010).Chasing the Bad News: An Analysis of 2005 Iraq and Afghanistan War Coverage on NBC and Fox News Channel.Journal of Communication,60(1),144-164.
  2. Addo, P. C.,Fang, J.,Kulbo, N. B.,Gumah, B.,Dagadu, J. C.,Li, L.(2021).Violent Video Games and Aggression Among Young Adults: The Moderating Effects of Adverse Environmental Factors.Cyberpsychology, Behavior, and Social Networking,24(1),17-23.
  3. Addo, P. C.,Jiaming, F.,Kulbo, N. B.,Liangqiang, L.(2020).COVID-19: fear appeal favoring purchase behavior towards personal protective equipment.The Service Industries Journal,40(7-8),471-490.
  4. Adwan, O.,Al-Tawil, M.,Huneiti, A.,Shahin, R.,Zayed, A. A.,Al-Dibsi, R.(2020).Twitter sentiment analysis approaches: A survey.International Journal of Emerging Technologies in Learning (IJET),15(15),79-93.
  5. Akpatsa, S. K.,Li, X.,Lei, H.(2021).A Survey and Future Perspectives of Hybrid Deep Learning Models for Text Classification.Artificial Intelligence and Security
  6. Andoh, J.,Asiedu, L.,Lotsi, A.,Chapman-Wardy, C.(2021).Statistical Analysis of Public Sentiment on the Ghanaian Government: A Machine Learning Approach.Advances in Human-Computer Interaction
  7. Benjaminsen, T. A.,Ba, B.(2019).Why do pastoralists in Mali join jihadist groups? A political ecological explanation.The Journal of Peasant Studies,46(1),1-20.
  8. Bollen, J.,Mao, H.,Zeng, X.(2011).Twitter mood predicts the stock market.Journal of Computational Science,2(1),1-8.
  9. Boon-Itt, S.,Skunkan, Y.(2020).Public perception of the COVID-19 pandemic on Twitter: sentiment analysis and topic modeling study.JMIR Public Health and Surveillance,6(4),e21978.
  10. Chen, L.-C.,Lee, C.-M.,Chen, M.-Y.(2020).Exploration of social media for sentiment analysis using deep learning.Soft Computing,24(11),8187-8197.
  11. Conner, C.,Samuel, J.,Kretinin, A.,Samuel, Y.,Nadeau, L.(2020).,未出版
  12. Dahal, B.,Kumar, S. A. P.,Li, Z.(2019).Topic modeling and sentiment analysis of global climate change tweets.Social Network Analysis and Mining,9(1),1-20.
  13. Devika, M. D.,Sunitha, C.,Ganesh, A.(2016).Sentiment Analysis: A Comparative Study on Different Approaches.Procedia Computer Science,87,44-49.
  14. Gayo-Avello, D.(2013).A Meta-Analysis of State-of-the-Art Electoral Prediction From Twitter Data.Social Science Computer Review,31(6),649-679.
  15. Gerber, M. S.(2014).Predicting crime using Twitter and kernel density estimation.Decision Support Systems,61,115-125.
  16. Goldberg, Y.(2016).A primer on neural network models for natural language processing.Journal of Artificial Intelligence Research,57,345-420.
  17. Ilyas, S. H. W.,Soomro, Z. T.,Anwar, A.,Shahzad, H.,Yaqub, U.(2020).Analyzing Brexit’s impact using sentiment analysis and topic modeling on Twitter discussion.The 21st Annual International Conference on Digital Government Research
  18. Jianqiang, Z.,Xiaolin, G.,Xuejun, Z.(2018).Deep convolution neural networks for twitter sentiment analysis.IEEE Access,6,23253-23260.
  19. LeCun, Y.,Bengio, Y.,Hinton, G.(2015).Deep learning.Nature,521(7553),436-444.
  20. Loria, S.(2018).Loria, S. (2018). textblob Documentation. Release 0.15, 2, 269..
  21. Manguri, K. H.,Ramadhan, R. N.,Amin, P. R. M.(2020).Twitter Sentiment Analysis on Worldwide COVID-19 Outbreaks.Kurdistan Journal of Applied Research,54-65.
  22. Martins, N.,Weaver, A. J.,Yeshua-Katz, D.,Lewis, N. H.,Tyree, N. E.,Jensen, J. D.(2013).A Content Analysis of Print News Coverage of Media Violence and Aggression Research.Journal of Communication,63(6),1070-1087.
  23. Mehta, P.,Pandya, S.(2020).A review on sentiment analysis methodologies, practices and applications.International Journal of Scientific and Technology Research,9(2),601-609.
  24. Minaee, S.,Azimi, E.,Abdolrashidi, A.(2019).,未出版
  25. Mohd Saleem, S.,Shoib, S.,Dazhamyar, A. R.,Chandradasa, M.(2021).Afghanistan: Decades of collective trauma, ongoing humanitarian crises, Taliban rulers, and mental health of the displaced population.Asian Journal of Psychiatry,65,102854.
  26. Mujahid, M.,Lee, E.,Rustam, F.,Washington, P. B.,Ullah, S.,Reshi, A. A.,Ashraf, I.(2021).Sentiment Analysis and Topic Modeling on Tweets about Online Education during COVID19.Applied Sciences,11(18),8438.
  27. Naseem, U.,Razzak, I.,Khushi, M.,Eklund, P. W.,Kim, J.(2021).COVIDSenti: A Large-Scale Benchmark Twitter Data Set for COVID-19 Sentiment Analysis.IEEE Transactions on Computational Social Systems
  28. Neppalli, V. K.,Caragea, C.,Squicciarini, A.,Tapia, A.,Stehle, S.(2017).Sentiment analysis during Hurricane Sandy in emergency response.International Journal of Disaster Risk Reduction,21,213-222.
  29. O’Connor, Bb. T.,Balasubramanyan, R.,Routledge, B. R.,Smith, N. A.(2010).From Tweets to Polls: Linking Text Sentiment to Public Opinion Time Series.Proceedings of the International AAAI Conference on Weblogs and Social Media
  30. Öztürk, N.,Ayvaz, S.(2018).Sentiment analysis on Twitter: A text mining approach to the Syrian refugee crisis.Telematics and Informatics,35(1),136-147.
  31. Rachman, F. H.(2020).Twitter Sentiment Analysis of Covid-19 Using Term Weighting TF-IDF And Logistic Regresion.2020 6th Information Technology International Seminar (ITIS)
  32. Ramadhani, A. M.,Goo, H. S.(2017).Twitter sentiment analysis using deep learning methods.2017 7th International Annual Engineering Seminar (InAES)
  33. Roy, A.,Ojha, M.(2020).Twitter sentiment analysis using deep learning models.2020 IEEE 17th India Council International Conference (INDICON)
  34. Rustam, F.,Khalid, M.,Aslam, W.,Rupapara, V.,Mehmood, A.,Choi, G. S.(2021).A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis.Plos One,16(2),e0245909.
  35. Ruz, G. A.,Henríquez, P. A.,Mascare˜no, A.(2020).Sentiment analysis of Twitter data during critical events through Bayesian networks classifiers.Future Generation Computer Systems,106,92-104.
  36. Samuel, J.,Ali, G. G.,Rahman, M.,Esawi, E.,Samuel, Y.(2020).Covid-19 public sentiment insights and machine learning for tweets classification.Information,11(6),314.
  37. Saurel, S.(2020).Saurel, S. (2020). The impact of social media on our society..
  38. Severyn, A.,Moschitti, A.(2015).Twitter sentiment analysis with deep convolutional neural networks.Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval
  39. Shin, J.,Thorson, K.(2017).Partisan Selective Sharing: The Biased Diffusion of Fact-Checking Messages on Social Media.Journal of Communication,67(2),233-255.
  40. Sohangir, S.,Petty, N.,Wang, D.(2018).Financial sentiment lexicon analysis.2018 IEEE 12th International Conference on Semantic Computing (ICSC)
  41. Tiwari, S.,Verma, A.,Garg, P.,Bansal, D.(2020).Social Media Sentiment Analysis on Twitter Datasets.2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS)
  42. Vashisht, G.,Sinha, Y. N.(2021).Sentimental study of CAA by location-based tweets.International Journal of Information Technology,13(4),1555-1567.
  43. Whitehouse, B.,Strazzari, F.(2015).Introduction: Rethinking Challenges to State Sovereignty in Mali and Northwest Africa.African Security,8(4),213-226.
  44. Xue, J.,Chen, J.,Hu, R.,Chen, C.,Zheng, C.,Su, Y.,Zhu, T.(2020).Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach.Journal of Medical Internet Research,22(11),e20550.
  45. Yadav, N.,Kudale, O.,Gupta, S.,Rao, A.,Shitole, A.(2020).Twitter sentiment analysis using machine learning for product evaluation.2020 International Conference on Inventive Computation Technologies (ICICT)
  46. Yao, F.,Wang, Y.(2020).Domain-specific sentiment analysis for tweets during hurricanes (DSSA-H) : A domain-adversarial neural-network-based approach.Computers, Environment and Urban Systems,83,101522.