题名

短期交通量變化:混沌特性之探索

并列篇名

Short-Term Traffic Flow Dynamics: A Chaotic Investigation

DOI

10.6402/TPJ.200306.0219

作者

藍武王(Lawrence W. Lan);林豐裕(Feng-Yu Lin)

关键词

短期交通量 ; 決定性混沌 ; 隨機 ; 細胞自動機 ; Short-term traffic flow ; Deterministic chaos ; Stochastic ; Cellular automaton

期刊名称

運輸計劃季刊

卷期/出版年月

32卷2期(2003 / 06 / 30)

页次

219 - 247

内容语文

繁體中文

中文摘要

本研究利用里亞普諾夫指數(Lyapunov exponents)混沌檢驗法及細胞自動機(cellular automaton; CA)分析技術檢驗市區道路短期交通量時間序列之變化是否屬於隨機現象或具有混沌現象,並選取台北市數個路段每五分鐘、十分鐘、十五分鐘交通量進行實證。結果顯示短期交通量時間序列具有明顯的非線性相關性跡象,且混沌時間序列可以成功解釋此種非線性結構。在預測準確度方面,實證結果亦顯示混沌時間序列模型優於隨機時間序列ARIMA模型。

英文摘要

In this study, Lyapunov exponents and cellular automaton (CA) are applied to examine whether the short-term traffic flows on urban streets display stochastic or chaotic phenomena. Empirical tests were conducted out of five, ten and fifteen minutes' traffic flow rates that are observed from some selected roadways in Taipei. We found strong evidence of nonlinear dependence in the short-term traffic flow dynamics and that chaotic time series model can successfully explain such nonlinear structures. In comparison with the conventional integrated autoregressive-moving average model (ARIMA), we also found that the chaos time series model obviously outperforms on the prediction accuracy of such short-term traffic flow dynamics.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. Adrangi, B.Chatrath, A.Raffiee, K.(2001).The Demand for US Air Transport Service: A Chaos and Nonlinearity Investigation.Transportation Research Part E,37
  2. Ahmed, M. S.Cook, A. R.(1982).Application of Time-series Analysis Techniques to Freeway Incident Detection.Transportation Research Record,841
  3. Baumol, W. J.Benhabib, J.(1989).Chaos: Significance, Mechanism, and Economic Applications.Journal of Economic Perspectives,3(1)
  4. Brock, W. A.(1986).Distinguishing Random and Deterministic Systems.Journal of Economic Theory,40(1)
  5. Brock, W. A.Dechert, W.(1988).Dynamic Econometric Modeling, Proceedings of the Third Austin Symposium.Cambridge:Cambridge University Press.
  6. Brock, W. A.Hsieh, D. A.LeBaron, B.(1993).Nonlinear Dynamics, Chaos, and Instability: Statistical Theory and Economic Evidence.Cambridge, MA:MIT Press.
  7. Brock, W. A.Sayers, C. L.(1988).Is the Business Cycle Characterized by Deterministic Chaos?.Journal of Monetary Economics,22(1)
  8. Chen, J. L.Islam, S.Biswas, P.(1998).Nonlinear Dynamics of Hourly Ozone Concentrations: Nonparametric Short Term Prediction.Atmospheric Environment,32(11)
  9. Clyde, W. C.Osler, C. L.(1997).Charting: Chaos Theory in Disguise.Journal of Futures Markets,17(5)
  10. Dammig, M.Mitschke, F.(1993).Estimation of Lyapunov Exponents from Time Series: The Stochastic Case.Physics Letters A,178
  11. Davis, G. A.Nihan, N. L.(1991).Nonparametric Regression and Short-term Freeway Traffic Forecasting.Journal of Transportation Engineering,117(2)
  12. Dendrinos, D. S.(1994).Traffic-flow Dynamics: A Search for Chaos.Chaos, Solitons and Fractals,4(4)
  13. Deneckere, R.Pelikan, S.(1986).Competitive Chaos.Journal of Economic Theory,40
  14. Devaney, R. L.(1986).An Introduction to Chaotic Dynamical Systems.Benjamin, Menlo Park, CA:
  15. Eckmann, J. P.Ruelle, D.(1992).Fundamental Limitations for Estimating Dimensions and Lyapunov Exponents in Dynamical Systems.Physics Letters D,56
  16. Elsner, J. B.Tsonis, A. A.(1992).Nonlinear Prediction, Chaos, and Noise.Bulletin American Meteorological Society,73(1)
  17. Farmer, J. D.Sidorowich, J. J.(1987).Predicting Chaotic Time Series.Physical Review Letters,59(8)
  18. Frison, T. W.Abarbanel, H. D. I.(1997).Proc. of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 3.
  19. Grassberger, P.Procaccia, I.(1983).Characterization of Strange Attractors.Physical Review Letters,50(5)
  20. Gribbin, J.(1999).New Physics.the Ivy Press.
  21. Hilborn, J.(1999).Chaos and Nonlinear Dynamics.Oxford University Press, Inc..
  22. Iokibe, T.Kanke, M.Fujimoto, Y.Suzuki, S.(1994).Proc. of the Third International Conference on Fuzzy Logic, Neural Nets and Soft Computing.Iizuka, Japan:
  23. Iokibe, T.Kanke, M.Yasunari, F.(1995).Local Fuzzy Reconstruction Method for Short-term Prediction on Chaotic Timer Series.Fuzzy Set,7(1)
  24. Iokibe, T.Koyama, M.Taniguchi, M.(1997).Proc. of the First International Conference on Knowledge-Based Intelligent Electronic Systems, Vol. 1.Adelaide, Australia:
  25. Islam, S.Bras, R. L.Rodriguez-Iturbe, I.(1993).A Possible Explanation for Low Correlation Dimension Estimates for the Atmosphere.Journal of Applied Meteorology,32(2)
  26. Itoh, K.(1995).A Method for Predicting Chaotic Time-series with Outliers.Electronics and Communications in Japan, Part 3,78(5)
  27. Kocak, K.Saylan, L.Sen, O.(2000).Nonlinear Time Series Prediction of O3 Concentration in Istanbul.Atmospheric Environment,34(8)
  28. Lorenz, E. N.(1963).Deterministic Nonperiodic Flow.Journal of Atmospheric Sciences,20(2)
  29. Lorenz, E. N.(1969).Atmospheric Predictability as Revealed by Naturally Occurring Analogies.Journal of Atmospheric Sciences,26
  30. Porporato, A.Ridolfi, L.(1997).Nonlinear Analysis of River Flow Time Sequences.Water Resources Research,33(6)
  31. Smith, B. L.Demetsky, M. J.(1997).Traffic Flow Forecasting: Comparison of Modeling Approaches.Journal of Transportation Engineering,123(4)
  32. Sugihara, G.May, R. M.(1990).Nonlinear Forecasting As a Way of Distinguishing Chaos from Measurement Error in Time Series.Nature,344(6268)
  33. Wolf, A.Swift, J. B.Swinney, H. L.Vastans, J.(1985).Determining Lyapunov Exponents from a Time Series.Physica D,16(3)
  34. 林尚儀(2001)。混沌車流短期交通量變化之預測-相空間局部近似法(PSLA)之應用。國立交通大學交通運輸研究所。
  35. 劉秉正(1998)。非線性動力學與混沌基礎。財團法人徐氏基金會。
  36. 藍武王 Lan, Lawrence W.林尚儀(2001)。中華民國運輸學會九十年年會暨第十六屆學術論文研討會
  37. 藍武王 Lan, Lawrence W.林豐裕 Lin, Feng-Yu郭怡雯(2003)。有限相空間模糊近傍差分之混沌預測以短期交通量預測為例。中國土木水利工程學刊 Journal of the Chinese Institute of Civil & Hydraulic Engineering
  38. 藍武王 Lan, Lawrence W.陳郁文 Chen, Yuh-Wen(1998)。應用模糊推論於混沌車流特性之研究-以短期交通量預測為例。模糊系統學刊 Journal of the Chinese Fuzzy Systems Association,4(1)
被引用次数
  1. 黃宏仁、張堂賢(2008)。車輛偵測器資料漏失之在線插補技術研究。運輸學刊,20(4),377-404。