题名

航空公司產能管理動態策略模式之研究

并列篇名

An Airline Company's Yield Management Dynamic Strategies Model

DOI

10.6402/TPJ.200312.0631

作者

陳昭宏(Jao-Hong Cheng);張有恆(Yu-Hern Chang)

关键词

存留機率 ; 產能管理 ; 動態艙位價值函數 ; 艙位配置 ; Survival probabilities ; Yield management ; Expected marginal seat revenue EMSR dynamic model ; Seat allocation

期刊名称

運輸計劃季刊

卷期/出版年月

32卷4期(2003 / 12 / 30)

页次

631 - 650

内容语文

繁體中文

中文摘要

航空公司產能管理的良窳,直接影響本身的競爭優勢。藉由制定艙位配置策略將訂位容量做最有效的管理,對於提高承載率、獲利能力,以及在市場上的相對競爭力等,皆有相當大的幫助。因此,如何制定最佳的艙位配置策略是非常重要之產能管理課題。目前國籍航空公司普遍的作法是以人員經驗進行艙位配置之決策,但此種方式耗時費力,且需付出相當高之人力成本。故本研究以機位控制員微觀角度之觀念,將決策單位改以每一艙位,然後依照每一訂位需求劃分階段,發展艙位配置之動態策略模式。本研究提出改善過去研究之作法與觀點包括:(1)本研究之多費率(大於2)艙位配置策略,可以同時考慮到取消訂位、未報到與多席訂位。改善往昔策略未考慮到取消訂位,以及僅允許同一費率多席訂位之缺失。(2)引進存留機率之概念,同時考慮到取消訂位與未報到。在決策樹分析下,發現以往艙位配置會受到存留機率影響,必須予以重新配置,否則會產生偏誤。並據以提出單席或多席訂位之最高費率等級不一定恆被接受之觀點,維持各費率間在動態訂位過程中之互相競爭。(3)本研究之艙位配置策略和Belobaba之動態巢式策略比較,則營收增加27%左右。

英文摘要

The quality of a seat allocation strategy affects airlines' competitiveness directly. The decision of booking capacity has a great influence on the load factor and revenue of flight, and the competitiveness of airline companies. Therefore, how to construct the optimal seat allocation strategies are thus an important issue on revenue management. To help airlines make a best decision effectively, this research develops a model to achieve maximum revenue. This research constructs a new dynamic seat allocation strategy model from the perspective of space controllers. The model's decision variables are the seat and its dynamic stages separated by every booking demand. The main contributions of this research are as follows: (1) It constructs multiple-fare expected marginal seat revenue function that can quickly decide the suitable allocation of single-seat or multiple-seat demand. (2) It also applies the concept of survival probabilities that considers cancellation and no-shows simultaneously. By the decision-tree analysis, the seat allocation will be reconsidered by survival probabilities, and then avoids a wrong allocation. Base on this concept, the highest fare of single-seat or multiple-seat demand can not always be accepted. Therefore, different fares' demands compete with each other in dynamic stage. (3) An empirical study indicates that this research increases 27% revenue in comparison with Belobaba's dynamic nested seat allocation strategy.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. Belobaba, P. P.(1989).Application of a Probabilistic Decision Model to Airline Seat Inventory Control.Operations Research,37
  2. Belobaba, P. P.(1987).Air Travel Demand and Airline Seat Inventory Management.MIT.
  3. Bhatia, A. V.Parekh, S. C.(1973).Optimal Allocation of Seats by Fare.
  4. Brumelle, S. L.McGill, J. I.(1993).Airline Seat Allocation with Multiple Nested Fare Classes.Operations Research,41
  5. Brumelle, S. L.McGill, J. I.Oum, T. H.Sawaki, K.Tretheway, M. W.(1990).Allocation of Airline Seats between Stochastically Dependent Demands.Transportation Science,24
  6. Curry, R.(1990).Optimal Seat Allocation with Fare Classes Nested by Origins and Destinations.Transportation Science,24
  7. Lee, T. C.Hersh, M.(1993).A Model for Dynamic Airline Seat Inventory Control with Multiple Seat Bookings.Transportation Science,27
  8. Richter, H.LUFTHANSA(1982).AGIFORS 22nd Symposium.
  9. Robinson, L. W.(1995).Optimal and Approximate Control Policies for Airline Booking with Sequential Nonmonotonic Fare Classes.Operations Research,43
  10. Weatherford, L. R.Bodily, S. E.(1992).A Taxonomy and Research Overview of Perishable-asset Revenue Management: Yield Management, Overbooking, and Pricing.Operations Research,40(5)