题名

運輸走廊瓶頸路段擁擠收費與捷運補貼之研究

并列篇名

Pricing Congestion Highway and Subsidizing Rail Transit in a Single Bottleneck Corridor

DOI

10.6402/TPJ.200412.0699

作者

許巧鶯(Chaug-Ing Hsu);彭一民(Yi-Min Peng)

关键词

瓶頸 ; 大眾運輸 ; 擁擠定價 ; 補貼 ; 最適控制 ; Bottleneck ; Transit ; Congestion pricing ; Subsidy ; Optimal control

期刊名称

運輸計劃季刊

卷期/出版年月

33卷4期(2004 / 12 / 30)

页次

699 - 729

内容语文

繁體中文

中文摘要

本研究考量運輸走廊兩替代運具一小汽車、捷運,利用最適控制理論建構一動態運具指派模式,發展演算法求算每個時間點上對應兩運具使用人數變化情形;於一階必要條件乘數分析可推導小汽車之動態擁擠費,並擬以擁擠費收入用淤補貼捷運營運成本,藉此增加發車班次數、縮短時間延滯、吸引捷運旅次,舒緩瓶頸路段擁擠,進一步並由演算法重新求解兩運具使用人數變化。此外,本研究之結果可求算一最適補貼額使系統均衡成本達致最小,另亦可依即時之擁擠狀況,調整瓶頸路段紓解率,釋出可用紓解量。故可提供交通管理單位研擬動態擁擠費、補貼策略及最適補貼額或適時調整瓶頸路段紓解容量之參考,藉此讓兩運具使用率達到最適配置狀態。

英文摘要

This study examined two substitute modes-car and transit in a single corridor, and applied the Optimal Control Theory to formulate a dynamic traffic assignment model. An iterative algorithm was proposed to solve this Optimal Control Problem which showed the two-mode assignment evolutions at each time interval of the study period. From the first-order necessary condition analysis, an optimal time-varying toll could be derived and obtained. The study further proposed a strategy in which transportation authority collected the toll revenue from car users to subsidize rail transit operating cost to increase the frequency of transit dispatching runs and shift car trips to transit trips. As a result, an optimal subsidy, which minimizes system equilibrium cost, could be determined. Finally, transportation authority could also release a latent capacity which is considered to be reserved for the adaptive management of high-level congestion.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. 賴禎秀(2001)。階梯式擁擠收費體制下最佳階段數之研究。運輸計劃季刊,253-274。
    連結:
  2. Arnott, R.,de Palma, A.,Lindsey, R.(1990).Economics of a Bottleneck.Journal of Urban Economics,27,111-130.
  3. Arnott, R.,de Palma, A.,Lindsey, R.(1990).Departure Time and Route Choice for the Morning Commute.Transportation Research,24,209-228.
  4. Arnott, R.,de Palma, A.,Lindsey, R.(1993).A Structural Model of Peak-Period Congestion: A Traffic Bottleneck with Elastic Demand.The American Economic Review,83,161-179.
  5. Bly, P. H.,Oldfield, R. H.(1986).The Effects of Public Transport Subsidies on Demand and Supply.Transportation Research,20,415-427.
  6. Braid, R. M.(1989).Uniform versus Peak-Load Pricing of a Bottleneck with Elastic Demand.Journal of Urban Economics,26,320-327.
  7. Carey, M.,Srinivasan, A.(1993).Externalities, Average and Marginal Costs, and Tolls on Congested Networks with Time-Varying Flows.Operations Research,41,217-231.
  8. Daganzo, C. F.(1995).A Pareto Optimum Congestion Reduction Scheme.Transportation Research,29,139-154.
  9. Daganzo, C. F.,Garcia, R.(2000).A Pareto Improving Strategy for the Time-Dependent Morning Commuter Problem.Transportation Science,34,303-311.
  10. de Palma, A.,Lindsey, R.(2001).Optimal Timetables for Public Transportation.Transportation Research,35,789-813.
  11. Harrington, W.,Krupnick, A. J.,Alberini, A.(2001).Overcoming Public Aversion to Congestion Pricing.Transportation Research,35,87-105.
  12. Jones, P.(1991).Gaining Public Support for Road Pricing through a Package Approach.Traffic Engineering and Control,32,194-196.
  13. Karlaftis, M. G.,McCarthy, P.(1998).Operating Subsidies and Performance in Public Transit: An Empirical Study.Transportation Research,32,359-375.
  14. Keeler, T. E.,Small, K. A.(1977).Optimal Peak-Load Pricing, Investment and Service Levels on Urban Expressways.Journal of Political Economy,85,1-26.
  15. Kraus, M.,Yoshida, Y.(2002).The Commuter`s Time-of-Use Decision and Optimal Pricing and Service in Urban Mass Transit.Journal of Urban Economics,51,170-195.
  16. Newell, G. F.(1971).Dispatching Policies for a Transportation Route.Transportation Science,5,91-105.
  17. Pigou, A. C.(1920).The Economics of Welfare.First Edition.
  18. Salzborn, F. J. M.(1972).Optimum Bus Scheduling.Transportation Science,6,137-148.
  19. Schrank, D. L.,Lomax, T. J.(1997).Research Report 1131-9, Research Study Number 0-1131, Texas Transportation Institute, The Texas A&M University System, College Station, Texas.
  20. Small, K. A.(1982).The Scheduling of Consumer Activities: Work Trips.The American Economic Review,72(3),467-479.
  21. Tabuchi, T.(1993).Bottleneck Congestion and Modal Split.Journal of Urban Economics,34,414-431.
  22. Wie, B. W.(1995).A Differential Game Approach to the Dynamic Mixed Behavior Traffic Network Equilibrium Problem.European Journal of Operational Research,83,117-136.
  23. Wie, B. W.,Tobin, R. L.(1998).Dynamic Congestion Pricing Models for General Traffic Networks.Transportation Research,32,313-327.
  24. Wie, B. W.,Tobin, R. L.,Friesz, T. L.(1994).The Augmented Lagrangian Method for Solving Dynamic Network Traffic Assignment Models in Discrete Time.Transportation Science,28,204-220.
  25. Yang, H.,Huang, H. J.(1997).Analysis of the Time-Varying Pricing of a Bottleneck with Elastic Demand Using Optimal Control Theory.Transportation Research,31,425-440.
  26. 唐富藏(1993)。運輸經濟學。華泰書局。
  27. 賴禎秀(2000)。最佳單階段與兩階段擁擠收費下通勤者出發時刻變動行為之經濟分析。運輸計劃季刊,29(2),253-280。
  28. 賴禎秀、李明儒、蔡仁偉(1997)。階梯式收費結構下通勤者之均衡行為模式。運輸計劃季刊,26(4),593-614。