题名

短期列車旅運需求之類神經網路預測模式建構與評估

并列篇名

Artificial Neural Networks for Short-Term Railway Passenger Demand Forecasting

DOI

10.6402/TPJ.200611.0475

作者

蔡宗憲(Tzung-Hsien Tsai);李治綱(Chi-Kang Lee);魏健宏(Chien-Hung Wei)

关键词

短期旅運量預測 ; 類神經網路 ; 預測模式比較 ; 綜合模式 ; Short-term forecasting ; Artificial neural networks ; Model comparison ; Combined model

期刊名称

運輸計劃季刊

卷期/出版年月

35卷4期(2006 / 11 / 30)

页次

475 - 505

内容语文

繁體中文

中文摘要

短期列車旅運需求預測模式可以提供軌道運輸營運者短期旅運資訊,有益於短期營運規劃之設計。本研究以類神經網路為基礎,建構短期列車旅運需求預測模式,探討三個模式構建課題:模式輸入變數設計對預測績效之影響、類神經網路模式與其他方法之績效比較、綜合模式(combined model)對預測績效之影響。我們蒐集臺鐵實際售票紀錄來進行模式構建以及驗證,有以下發現:其一,不適當的變數選用會導致類神經網路預測績效惡化。其二,在預測績效表現上,類神經網路優於隨機模式、去季節化隨機模式以及移動平均模式,但與指數平滑法相近。其三,綜合模式績效優於個別預測模式惟必須挑選較佳的個別模式來建立綜合模式。

英文摘要

Short-term railway passenger demand forecasting can offer essential information to benefit short-term operational planning. This study constructed short-term forecasting models for railway passenger demand and discusses three modeling issues: the effects of input design on forecasting performance, validity of artificial neural networks and validity of combined models. We collected data from Taiwan Railway Administration for model construction and validation. Three findings were obtained. First, inappropriate design or use of input variables may result in unsatisfactory forecasting performance. Second, Artificial Neural Networks outperform random walk model, deseasonalized random walk model and moving average model, but have similar performance to exponential smoothing model. Third, combined models outperform individual models. However candidates should be carefully selected for combining.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. 魏健宏|林士傑|李穎(2003)。高速公路客運車輛旅行時間預測之實證評析。運輸計劃季刊,32(4),651-680。
    連結:
  2. Adya, M.,Collopy, F.(1998).How Effective Are Neural Networks at Forecasting and Prediction? A Review and Evaluation.Journal of Forecasting,17,481-495.
  3. Armstrong, J. S.(2001).Principles of Forecasting.Boston, US:Kluwer Academic Publishers.
  4. Bazaraa, M. S.,Sherali, H. D.,Shetty, C. M.(1993).Nonlinear Programming: Theory and Algorithms.New York:Wiley.
  5. Chatfield, C.(2000).Time Series Forecasting.USA:Chapman & Hall/CRC.
  6. Clark, S.(2003).Traffic Prediction Using Multivariate Nonparametric Regression.Journal of Transportation Engineering,129(2),161-168.
  7. DeLurgio, S. A.,McGraw-Hill(1998).Forecasting Principles and Applications.
  8. Dharia, A.,Adeli, H.(2003).Neural Network Model for Rapid Forecasting of Freeway Link Travel Time.Engineering Applications of Artificial Intelligence,16,607-613.
  9. Dougherty, M. S.,Cobbett, M. R.(1997).Short-term Inter-urban Traffic Forecasts Using Neural Networks.International Journal of Forecasting,13(1),21-31.
  10. Faraway, J.,Chatfield, C.(1998).Time Series Forecasting with Neural Networks: A Comparative Study Using the Airline Data.Applied Statistics,47(2),231-250.
  11. Fildes, R.(1992).The Evaluation of Extrapolative Forecasting Methods.International Journal of Forecasting,8,81-98.
  12. Fildes, R.,Hibon, M.,Makridakis, S.,Meade, N.(1998).Generalising about Univariate Methods: Further Empirical Evidence.International Journal of Forecasting,14,339-358.
  13. Fildes, R.,Lusk, E. J.(1984).The Choice of a Forecasting Model.OMEGA,12(5),427-435.
  14. Grubb, H.,Mason, A.(2001).Long Lead-time Forecasting of UK Air Passengers by Holt-Winters Methods with Damped Trend.International Journal of Forecasting,17,71-82.
  15. Haykin, S.(1999).Neural Networks: A Comprehensive Foundation.USA:Prentice hall.
  16. Hibon, M.,Evgeniou, T.(2005).To Combine or Not to Combine: Selecting among Forecasts and Their Combinations.International Journal of Forecasting,21,15-24.
  17. Hill, T.,O`Connor, M.,Remus, W.(1996).Neural Network Models for Time Series Forecasts.Management Science,42(7),1082-1091.
  18. Ishak, S.,Alecsandru, C.(2004).Optimizing Traffic Prediction Performance of Neural Networks under Various Topological, Input, and Traffic Conditions Setting.Journal of Transportation Engineering,130(4),452-465.
  19. Ishak, S.,Kotha, P.,Alecsandru, C.(2003).Transportation Research Record 1836.
  20. Kimes, S. E.(2002).Perceived Fairness of Yield Management.Cornell Hotel and Restaurant Administration Quarterly,43(1),21-30.
  21. Ku, C. C.,Lee, K. Y.(1995).Diagonal Recurrent Neural Networks for Dynamic Systems Control.IEEE Transactions on Neural Networks,6(1),144-156.
  22. Kumar, U. A.(2005).Comparison of Neural Network and Regression Analysis: A New Insight.Expert Systems with Application,29,424-430.
  23. Lachtermacher, G.,Fuller, J. D.(1995).Backpropagation in Time-series Forecasting.Journal of Forecasting,14,381-393.
  24. Ledoux, C.(1997).An Urban Traffic Flow Model Integrating Neural Networks.Transportation Research Part C,5(5),287-300.
  25. Lee, A. O.(1990).USA,MIT.
  26. Lingras, P.,Mountford, P.(2001).Time Delay Neural Networks Designed Using Genetic Algorithms for Short Term Inter-city Traffic Forecasting.
  27. Liu, L. M.,Bhattacharyya, S.,Sclove, S. L.,Chen, R.(2001).Data Mining on Time Series: An Illustration Using Fast-food Restaurant Franchise Data.Computation Statistics & Data Analysis,37,455-476.
  28. Makridakis, S.,Andersen, A.,Carbone, R.,Fildes, R.,Hibon, M,Lewandowski, R.,Newton, J.,Parzen, E.,Winkler, R.(1982).The Accuracy of Extrapolation (Time Series) Methods: Results of a Forecasting Competition.Journal of Forecasting,1,111-153.
  29. Makridakis, S.,Hibon, M.(2000).The M3-Competition: Results, Conclusions and Implications.International Journal of Forecasting,16,451-476.
  30. Makridakis, S.,Wheelwright, S. C.,Hyndman, R. J.(1998).Forecasting: Methods and Applications
  31. Nam, K.,Schaefer, T.(1995).Forecasting International Airline Passenger Traffic Using Neural Networks.Logistics and Transportation Review,31(3),239-251.
  32. Piramuthu, S.,Ragavan, H.,Shaw, M. J.(1998).Using Feature Construction to Improve the Performance of Neural Networks.Management Science,44(3),416-429.
  33. Prudêncio, R. B. C.,Ludermir, T. B.(2004).Meta-learning Approaches to Selecting Time Series Models.Neurocomputing,61,121-137.
  34. Rousseeuw, P. J.,Leroy, A. M.(1987).Robust Regression & Outlier Detection.USA:John Wiely & Sons.
  35. Sfetsos, A.(2000).A Comparison of Various Forecasting Techniques Applied to Mean Hourly Wind Speed Time Series.Renewable Energy,21,23-35.
  36. Shah, C.(1997).Model Selection in Univariate Time Series Forecasting Using Discriminant Analysis.International Journal of Forecasting,13,489-500.
  37. Smith, B. L.,Demetsky, M. J.(1994).Transportation Research Record 1453.
  38. Smith, B. L.,Williams, B. M.,Oswald, R. K.(2002).Comparison of Parametric and Nonparametric Models for Traffic Flow Forecasting.Transportation Research Part C,10,303-321.
  39. Sun, X.,Brauner, E.,Hormby, S.(1997).Operations Research in the Airline Industry.Boston, US:Kluwer Academic Publishers.
  40. Tsai, T. H.,Lee, C. K.,Wei, C. H.(2003).An Artificial Neural Networks Approach to Forecast Short-term Railway Passenger Demand.Journal of the East Asia Society for Transportation Studies,4,221-235.
  41. Viahogianni, E. I.,Golias, J. C.,Karlaftis, M. G.(2004).Short-term Traffic Forecasting: Overview of Objectives and Methods.Transport Reviews,24(5),533-557.
  42. Williams, B. M.,Durvasula, P. K.,Brown, D. E.(1998).Transportation Research Record 1644.
  43. Williams, B. N.,Hoel, L. A.(2003).Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results.Journal of Transportation Engineering,129,664-672.
  44. Zhang, H. M.(2000).Recursive Prediction of Traffic Conditions with Neural Network Models.Journal of Transportation Engineering,126(6),472-481.
  45. 許巧鶯|溫裕弘(1997)。運輸計劃季刊
被引用次数
  1. 嚴國基、謝閔易、劉基全、張倉賓、高增英、洪上智、林韋捷、王中允(2017)。多元化計程車機場接送服務動態派車接機時間預測模型。都市交通,32(1),69-110。
  2. 葉金標、童春芳、張巍獻(2009)。醫療院所之門診失約預測:類神經網路之應用。臺灣公共衛生雜誌,28(5),361-373。
  3. 章國威、陳淑娟、郭仕堯、王薏婷(2010)。應用倒傳遞網路預測日本來台航空客運需求之研究。管理實務與理論研究,4(3),120-132。