题名

應用資料採礦探討國際線航空旅客之線上購票行為

并列篇名

Application of Data Mining to Explore International Airline Passenger Online Booking Behavior

DOI

10.6402/TPJ.200806.0197

作者

林祥生(Hsiang-Sheng Lin);劉益豪(I-Hao Liu)

关键词

線上購票 ; 資料採礦 ; 群集化 ; 分類 ; 關聯規則 ; Online booking ; Data mining ; Clustering ; Classification ; Association rule

期刊名称

運輸計劃季刊

卷期/出版年月

37卷2期(2008 / 06 / 30)

页次

197 - 235

内容语文

繁體中文

中文摘要

在網際網路日益普及下,近年來航空公司多將線上購票視為網站的必備功能,也因此與旅客之間出現新的互動關係。拜電子商務蓬勃發展之賜,航空公司透過旅客的線上購票行為,能同步獲得豐富的顧客資料及交易紀錄,而如何善用此原始資料,並透過適當的資料處理技術,提供給顧客個人化的行銷及服務,將是未來航空公司的重要課題。本研究應用資料採礦中的群集化、分類及關聯分析技術,對線上購票旅客進行探討,首先用RFM指標(recency、frequency、monetary)及艙等和平均哩程數等五項顧客價值指標對顧客進行群集化,接著以其結果建構顧客分類預測模式,最後則針對不同旅次目的進行航線之間的關聯分析。本研究成果在實地訪談航空公司相關人員後,也獲得實務上的驗證。

英文摘要

In recent years, more and more airlines regard on-line booking as the basic function of their homepage. Since the Internet becomes more popular day by day, the traditional travel agencies are facing the crisis of having the middleman removed. However, a new interaction has appeared between airlines and passengers. While the e-commerce develops vigorously, the airlines go through passengers' online booking behavior, namely to obtain more customer information and transaction records. Therefore, how to use this data to understand the customers, experience suitable data processing technology, and provide the customized marketing service to riders, all have become issues of future airlines. This research will explore data mining to discuss airline passengers' online booking behaviors. First, we adopt the RFM model (Recency, Frequency, Monetary), the average mileage and classes as five customer value index items to process clustering for riders. The result will make a classification and quickly distinguish customer group belongings. Again, we aim at service products classification to understand the consumers' behavior of each route. Finally, the association analysis is carried out for different trip purposes, thence appears customers' implicit connecting demands between all routes.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. Arthur, H.(1994).Strategic Database Marketing.Chicago:Probus.
  2. Berry, M. J. A.,Linoff, G.(1997).Data Mining Technique for Marketing, Sale, and Customer Support.N. J.:Wiley Computer.
  3. Berry, M. J. A.,Linoff, G.(1999).Mastering Data Mining: The Art and Science of Customer Relationship Management, Sale, and Customer Support.N. J.:Wiley Computer.
  4. Chan, K. H. C.,Gerry, K. L.(2002).Data Mining and Customer Relationship Marketing in the Banking Industry.Singapore Management Review,24,1-27.
  5. Changchien, S. W.,Lu, T. C.(2000).Mining Association Rules Procedure to Support On-Line Recommendation by Customers and Products Fragmentation.Expert Systems with Applications,20,325-335.
  6. Fayyad, U.,Piatetsky-Shapiro, G.,Smyth, P.(1999).From Data Mining to Knowledge Discovery in Databases.AI Magazine,17(3),37-54.
  7. Han, J.,Kamber, M.(2000).Data Mining: Concepts and Techniques.San Francisco:Morgan Kaufmann Publisher Inc.
  8. Hsieh, N. C.(2004).An Integrated Data Mining and Behavioral Scoring Model for Analyzing Bank Customers.Expert Systems with Applications,27,623-633.
  9. Kass, G. V.(1980).An Exploratory Technique for Investigating Large Quantities of Categorical Data.Applied Statistics,29,119-127.
  10. Liaoa, S. H.,Chen, Y. J.(2000).Mining Customer Knowledge for Electronic Catalog Marketing.Expert Systems with Applications,27,521-532.
  11. Mac Queen, J. B.(1967).Some Methods for Classification and Analysis of Multivariate Observation.Proc. 5th Berkeley Symposium on Mathematical Statistics and Probability
  12. MIT(2001).The Technology Review Ten.Boston:MIT Technology.
  13. 尹相志(2003)。SQL 2000 Analysis Service。臺北縣:維科圖書公司。
  14. 王媚慧(2004)。碩士論文(碩士論文)。淡江大學資訊工程研究所。
  15. 林祥生、劉益豪(2006)。透過航空公司線上購票之顧客區隔研究。2006年國際學術研討會管理組論文集
  16. 劉益豪(2006)。碩士論文(碩士論文)。中華大學科技管理研究所。
  17. 蔡永恆(1999)。碩士論文(碩士論文)。靜宜大學資訊管理研究所。
  18. 盧世銘(2004)。碩士論文(碩士論文)。政治大學經營管理研究所。
  19. 薛文佶(2004)。碩士論文(碩士論文)。臺北科技大學商業自動化與管理研究所。
  20. 謝文雄(2002)。碩士論文(碩士論文)。雲林科技大學資訊管理研究所。
被引用次数
  1. 陳民祐、王建富(2013)。臺鐵會員制再深化-利用資料探勘技術訂定忠誠計畫規則。運輸計劃季刊,42(3),221-246。