题名

臺鐵旅運者之服務水準選擇與願支付價格研究

并列篇名

A STUDY ON PASSENGERS' TRAIN CHOICE BEHAVIOR AND WILLINGNESS TO PAY FOR SERVICE ATTRIBUTES

作者

蕭傑諭(Chieh-Yu Hsiao);王溥琳(Pu-Lin Wang)

关键词

列車選擇 ; 潛在類別羅吉特模式 ; 條件評估法 ; 願支付價格 ; Train Choice ; Latent Class Logit Model ; Contingent Valuation Method ; Willingness to Pay

期刊名称

運輸計劃季刊

卷期/出版年月

51卷3期(2022 / 09 / 30)

页次

169 - 194

内容语文

繁體中文

中文摘要

臺鐵近年積極提升列車服務水準,先後引進太魯閣及普悠瑪號,大多投入東部線營運以解決花東旅運問題。東部線尖峰時間本就一票難求,又因車種簡化政策將不同服務水準列車訂定相同票價,致使有限資源之配置遭到扭曲,讓問題更加嚴重。依據服務水準與旅運者願支付價格定價,為改善資源配置效率之良方,惟現有研究於此著墨甚少。故本研究採用敘述性偏好方法進行問卷調查,建構多項及潛在類別羅吉特模式以分析旅運者對列車服務屬性之偏好及其異質性,用以估計旅運者對服務屬性之願支付價格,並推估旅客對普悠瑪號、太魯閣號與自強號的願支付價差;另外亦以條件評估法估計三種列車之願支付價格,以期探究方法論之差異。羅吉特模式結果均顯示可退票、可換票為旅客重要考量因素,且長程旅客較短程、中程旅客在意旅行時間。潛在類別羅吉特模式以年齡、所得、商務旅次為分類變數,結果顯示年齡為18歲至24歲或65歲以上、所得較低且非商務旅次之旅客較在意金錢相關變數,而年齡介於25至64歲、所得較高且商務旅次之旅客較在意時間相關變數。三界二分選擇模式所得願支付價格之標準差較雙界二分選擇模式者小,增加詢價次數在願付價格之估計上更具效率。經三種模式校估結果顯示透過旅客對方案屬性間之取捨,進而做出偏好選擇的離散機率選擇模式所得到的列車願付價差差異較大。利用本研究成果將三車種與其服務屬性進行方案組合,例如搭配不同之旅行時間、退換票機制以設計差別票價,可供臺鐵未來調整訂價策略、優化營收管理之參考依據。

英文摘要

In recent years, Taiwan Railways Administration (TRA) has introduced Taroko and Puyuma Express trains for the Eastern Route in order to improve the service level of trains. During peak hours, booking seats on the Eastern Route is very difficult. However, the simplified ticket type policy, which keeps trains with different service levels have the same ticket prices, makes the problem worse. An appropriate pricing scheme based on passengers' willingness to pay (WTP) for the attributes of the services would improve the efficiency of resource allocation and relieve the booking problem. Nevertheless, there are limited studies on this issue. This study designs questionnaire by stated preference method and estimates multinomial and latent class logit models to analyze passengers' preferences and willingness to pay for service attributes of trains. Furthermore, we also estimate the passengers' willingness to pay for different trains (Puyuma, Taroko and Tze-Chiang Express) by the Contingent valuation (CV) method. Estimates of both models show that passengers prefer refundable and exchangeable tickets, and passengers on long-distance trips, comparing to those on short- or medium-distance trips, care more about travel time. Two classes, identified by passenger's income, age and trip type, are suggested for the latent class logit model. Passengers with lower income, age between 18 to 24 and over 65, non-business trip are more sensitive to fare-related attributes, while passengers with higher income, age between 25 to 64, business trip consider more about time-related attribute. The standard deviation of WTP estimated by the tri-bounded dichotomous choice model is smaller than that of the double bounded model. This indicates the improvement of method efficiency. The differences of passenger's WTP among three express train types obtained by logit models are larger than those of CV models. The results of this study would could be applied to design TRA's express train services, such as combinations of different travel times and ticket refund mechanisms with different ticket prices. for revenue management.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. 林思玲,謝德宗,林惠玲(2017)。古蹟門票價格的決定─遊客付費意願之評估。應用經濟論叢,101,31-66。
    連結:
  2. Ali, A. A.,Warg, J.,Eliasson, J.(2020).Pricing Commercial Train Path Requests Based on Societal Costs.Transportation Research Part A: Policy and Practice,132,452-464.
  3. Baumol, W. J.(1983).Some Subtle Pricing Issues in Railroad Regulation.International Journal of Transport Economics/Rivista internazionale di economia dei trasporti,10(1/2),341-355.
  4. Ben-Akiva, M. E.,Lerman, S. R.(1985).Discrete Choice Analysis: Theory and Application to Travel Demand.MIT press.
  5. Bharill, R.,Rangaraj, N.(2008).Revenue Management in Railway Operations: A Study of the Rajdhani Express, Indian Railways.Transportation Research Part A: Policy and Practice,42(9),1195-1207.
  6. Feng, F. L.,Zhang, J. Q.,Guo, X. F.(2015).A Dynamic Model for Railway Freight Overbooking.Journal of Central South University,22(8),3257-3264.
  7. Green, P. E.,Srinivasan, V.(1978).Conjoint Analysis in Consumer Research: Issues and Outlook.Journal of Consumer Research,5(2),103-123.
  8. Hanemann, M.,Loomis, J.,Kanninen, B.(1991).Statistical Efficiency of Double-Bounded Dichotomous Choice Contingent Valuation.American Journal of Agricultural Economics,73(4),1255-1263.
  9. Harker, P. T.,Hong, S.(1994).Pricing of Track Time in Railroad Operations: An Internal Market Approach.Transportation Research Part B: Methodological,28(3),197-212.
  10. Kroes, E. P.,Sheldon, R. J.(1988).Stated Preference Methods: An Introduction.Journal of Transport Economics and Policy,22(1),11-25.
  11. Luo, H.,Nie, L.,He, Z.(2016).Modeling of Multi-Train Seat Inventory Control Based on Revenue Management.2016 International Conference on Logistics, Informatics and Service Sciences (LISS)
  12. Ndembe, E.(2015).Hard Red Spring Wheat Marketing: Effects of Increased Shuttle Train Movements on Railroad Pricing in the Northern Plains.Journal of the Transportation Research Forum,54(2),101-115.
  13. Pratikto, F. R.(2020).A Practical Approach to Revenue Management in Passenger Train Services: A Case Study of the Indonesian Railways Argo Parahyangan.Journal of Rail Transport Planning & Management,13
  14. Shajin, D.,Krishnamoorthy, A.,Dudin, A. N.,Joshua, V. C.,Jacob, V.(2020).On a Queueing-Inventory System with Advanced Reservation and Cancellation for the Next K time Frames Ahead: the Case of Overbooking.Queueing Systems,94(1-2),3-37.
  15. Train, K. E.(2009).Discrete Choice Methods with Simulation.Cambridge university press.
  16. Tversky, A.,Kahneman, D.(1974).Judgment Under Uncertainty: Heuristics and Biases.Science,185(4157),1124-1131.
  17. van den Berg, V. A.,Verhoef, E. T.(2014).Congestion Pricing in a Road and Rail Network with Heterogeneous Values of Time and Schedule Delay.Transportmetrica A: Transport Science,10(5),377-400.
  18. Walker, J.,Ben-Akiva, M.(2002).General Random Utility Model.Mathematical Social Sciences,43(3),303-343.
  19. Wang, Y.,Li, Y.,Li, M.,Shi, X.(2018).An Optimization Method for Train Seat Inventory Control.International Journal of Software Engineering and Knowledge Engineering,28(4),485-506.
  20. Wen, C.,Wang, W.,Fu, C.(2012).Latent Class Nested Logit Model for Analyzing High-Speed Rail Access Mode Choice.Transportation Research Part E: Logistics and Transportation Review,48(2),545-554.
  21. Yan, Z.,Li, X.,Zhang, Q.,Han, B.(2020).Seat Allocation Model for High-speed Railway Passenger Transportation based on Flexible Train Composition.Computers & Industrial Engineering,142(C),142.
  22. Zarembka, P.(Ed.)(1973).Frontiers in Econometrics.Academic Press.
  23. Zuo, D. J.,Wang, C. G.,Ni, S. Q.(2010).Study on Relationship between Residual Rate of Passengers and Train Seat Occupation Rate.Railway Transport and Economy,7,25-28.
  24. 孫千山,吳明軒。鐵路系統收益管理實務回顧與建議臺鐵推動策略方向。臺鐵資料季刊,364,75-104。
  25. 蕭傑諭,梁喻婷(2019)。拒絕登機—旅運者願支付與願接受價格之研究。中華民國運輸學會 2019 年會暨學術論文國際研討會論文集