题名

多元交通行動服務使用者之套票購買行為分析-以高雄市MaaS系統為例

并列篇名

ANALYSIS OF USERS' PURCHASE BEHAVIOR OF MaaS PACKAGES-A CASE STUDY OF THE MaaS IN KAOHSIUNG CITY

作者

盧宗成(Chung-Cheng Lu);簡佑勳(Yu-Shyun Chien);周翔淳(Shiang-Chung Chou);吳東凌(Tung-Ling Wu);陳翔捷(Siang-Jie Chen)

关键词

多元交通行動服務 ; 資料探勘 ; 決策樹 ; 支持向量機 ; 不平衡資料集 ; Mobility as a service ; Data mining ; Decision tree ; Support vector machine ; Imbalanced dataset

期刊名称

運輸計劃季刊

卷期/出版年月

52卷3期(2023 / 09 / 30)

页次

161 - 190

内容语文

繁體中文;英文

中文摘要

多元交通行動服務(Mobility as a Service, MaaS)為近年來一項新興概念,國內外許多城市已開始推動MaaS,了解民眾的套票購買行為及考量因素將有助於主管機關與業者研擬適當的行銷策略以推廣MaaS。本研究以資料探勘方法建立會員方案續買預測模型,並以高雄市MaaS系統會員註冊資料、方案購買記錄及電子票證搭乘記錄為輸入資料。為能改善MaaS會員套票購買資料在各方案間之資料不平衡問題,本研究提出以機率分配為基礎之增加抽樣方法(probability distribution-based over-sampling, PDB),並將此方法與文獻中常用的SMOTE(synthetic minority over-sampling technique)方法以網路上公開的資料集進行測試與比較,結果發現PDB顯著優於SMOTE,可進一步應用於處理MaaS會員資料,並建構MaaS會員方案續買預測模型。經由交叉驗證測試結果發現,經由PDB增加抽樣之資料所建構的決策樹及支持向量機模式皆有不錯預測結果,顯示模型具備會員方案續買預測能力。此外,本研究也針對決策樹模型的分支規則進行探討,發現除使用者在各個運具的每月花費會影響續買行為外,月份也是重要的考量因素。

英文摘要

Mobility as a service (MaaS) is an emerging concept in recent years, and it has been promoted in many cities around the world. Understanding users' purchase behavior of MaaS packages will help the authorities and operators to promote MaaS. This study develops a package-purchasing prediction model using data mining techniques. The prediction model is built and trained using the data of membership registration, package-purchasing records and iPASS card transit-ridership records of MaaS users in Kaohsiung. Through preliminary data processing and analysis, it is found that significant imbalance exists in MaaS users' package-purchasing records for the different plans, and the imbalance may affect the prediction results of the model. To address this issue, the study proposes an oversampling method, namely probability distribution-based over-sampling (PDB), to generate additional samples. This method is first tested and compared with the SMOTE (synthetic minority over-sampling technique) method commonly used in the literature by using datasets published online, and it is found that the proposed method is significantly better than the SMOTE method. Then the study uses the method to balance the MaaS users' package-purchasing data, and constructs a decision tree model and a support vector machine model for MaaS users' package-purchasing prediction. Through cross-validation test results, it is found that the models constructed by the oversampling data using the simulation method has good prediction results which shows that the prediction model has the ability to predict the users' purchase behavior. This study also discusses the branch variables in the decision tree model, and found that the user's monthly spending on each public transportation mode will affect the package-purchasing of MaaS users. Moreover, month is also an important variable. The results can be used as a reference for MaaS operators to take appropriate actions on marketing based on the results of the users' package-purchasing prediction.

主题分类 工程學 > 交通運輸工程
社會科學 > 管理學
参考文献
  1. 王晉元,盧宗成,李晟豪,陳其華,吳東凌,陳翔捷(2019)。手機信令資料探勘於改善觀光旅客公共運輸服務之研究-以花蓮縣臺灣好行路線為例。運輸計劃季刊,48(2),105-131。
    連結:
  2. 林至康,張志鴻,蘇昭銘,張朝能,沈美慧,蔡欽同(2018)。「運用電子票證資料推估大眾運輸旅次訖點之演算法構建與驗證。運輸計劃季刊,47(1),1-28。
    連結:
  3. 盧宗成,王晉元,簡佑勳,楊煜民,王蕾絜,林季萱,吳東凌,陳翔捷(2022)。交通行動服務會員之共享運具使用特性分析–以高雄市 MeN Go 系統為例。運輸計劃季刊,51(3),195-230。
    連結:
  4. 賴盈臻,邱裕鈞(2021)。基於行動信令資料之使用運具判斷模式。運輸學刊,33(3),285-309。
    連結:
  5. 鍾智林,李舒媛(2018)。以悠遊卡大數據初探 YouBike 租賃及轉乘捷運行為。都市交通,33(1),16-36。
    連結:
  6. Barua, S.,Islam, M. M.,Yao, X.,Murase, K.(2012).MWMOTE--Majority Weighted Minority Oversampling Technique for Imbalanced Data Set Learning.IEEE Transactions on Knowledge and Data Engineering,26(2),405-425.
  7. Chawla, N. V.,Bowyer, K. W.,Hall, L. O.,Kegelmeyer, W. P.(2002).SMOTE: Synthetic Minority Over-Sampling Technique.Journal of Artificial Intelligence Research,16,2825-2830.
  8. Chen, M. C.,Chen, L. S.,Hsu, C. C,Zeng, W. R.(2008).An Information Granulation based Data Mining Approach for Classifying Imbalanced Data.Information Sciences,178(16),3214-3227.
  9. Long, Y.,Thill, J. C.(2015).Combining Smart Card Data and Household Travel Survey to Analyze Jobs–Housing Relationships in Beijing.Computers, Environment and Urban Systems,53,19-35.
  10. Malerba, D., UCI Machine Learning Repository - Page Blocks Classification Data Set, website: https://archive.ics.uci.edu/ml/datasets/Page+Blocks+Classification, Retrieved January 27, 2020.
  11. Meng, C.,Cui, Y.,He, Q.,Su, L.,Gao, J.(2017).Travel Purpose Inference with GPS Trajectories, Pois, and Geo-Tagged Social Media Data.2017 IEEE International Conference on Big Data
  12. Morency, C.,Trepanier, M.,Agard, B.(2006).Analysing the Variability of Transit Users Behaviour with Smart Card Data.2006 IEEE Intelligent Transportation Systems Conference
  13. Pedregosa, F.,Varoquaux, G.,Gramfort, A.,Michel, V.,Thirion, B.,Grisel, O.,Blondel, M.,Prettenhofer, P.,Weiss, R.,Dubourg, V.,Vanderplas, J.,Passos, A.,Cournapeau, D.,Brucher, M.,Perrot, M.,Duchesnay, E.(2011).Scikit-learn: Machine Learning in Python.Journal of Machine Learning Research,12,2825-2830.
  14. Ramboll, Whimpact(2019).Insights from the World’s First Mobility-as-a-service (MaaS) System.Denmark:MaaS Global.
  15. Rodríguez, J.,Semanjski, I.,Gautama, S.,van de Weghe, N.(2018).Unsupervised Hierarchical Clustering Approach for Tourism Market Segmentation Based on Crowdsourced Mobile Phone Data.Sensors,18(9),2972.
  16. UCI, UCI Machine Learning Repository, , website: http://archive.ics.uci.edu/ml, Retrieved January 27, 2020.
  17. Wong, Y. Z.,Hensher, D. A.,Mulley, C.(2018).Emerging Transport Technologies and the Modal Efficiency Framework: A Case for Mobility as a Service.15th International Conference Series on Competition and Ownership in Land Passenger Transport
  18. 王銘亨(2016)。閃光號誌路口交通事故特性分析─以臺南市為例。交通學報,16(1),39-54。
  19. 林浩瑋(2016)。淡江大學運輸管理學系運輸科學碩士班。
  20. 陳世承(2017)。國立清華大學資訊工程研究所。
  21. 陳威廷,張永佳(2017)。交通大學運輸與物流管理學系。
  22. 廖振宇(2015)。淡江大學運輸管理學系運輸科學碩士班。
  23. 劉芷璇(2016)。逢甲大學運輸科技與管理學系。